

CHALMERS UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Performance Evaluation of Serverless Applications and Infrastructures

PhD Defense

Opponent: Petr Tůma Committee: Evgenia Smirni Vittorio Cortellessa Alessandro Papadopoulos Joel Scheuner Scheuner@chalmers.se ♀ ¥ joe4dev ⊘ joelscheuner.com

Supported by WALLENBERG AL AUTONOMOUS SYS

2022-09-08

Goal of the PhD

To enable reproducible performance evaluation of serverless applications and their underlying cloud infrastructure.

Progression of Deployment Options

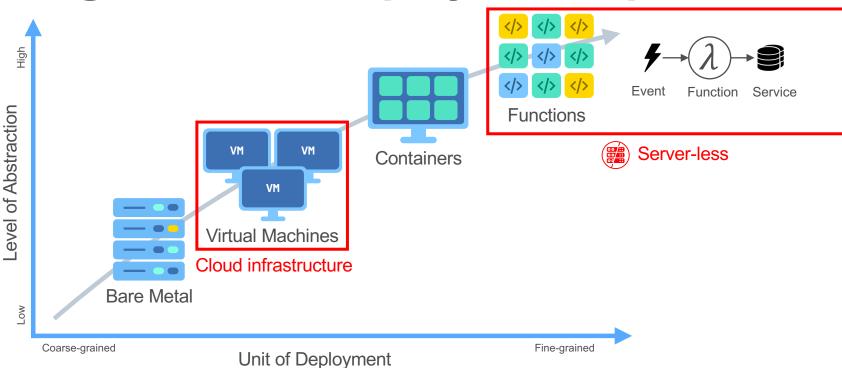
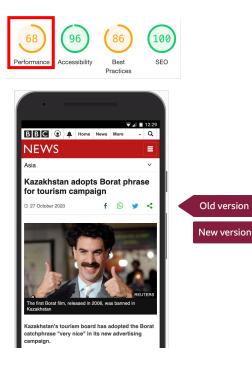



Figure adapted from S. Fink. Serverless – Where Have We Come? Where Are We Going? Keynote at WoSC@CLOUD'18.

UNIVERSITY OF GOTHENBURG

Serverless in the Wild

CHALMERS

INIVERSITY OF TECHNOLOGY

Kazakhstan adopts

Borat phrase for

tourism campaign

Asia China India

() 1 day ago

<azakhstan

Performance in Serverless

High latency is a problem [Leitner et al., JSS'19.]

Top 2 non-functional challenge [Wen et al., ESEC/FSE'21.]

Most popular topic within serverless [Yussupov et al., UCC'19.]

\rightarrow No consolidated view

Moving BBC Online to the cloud: https://medium.com/bbc-design-engineering/moving-bbc-online-to-the-cloud-afdfb7c072ff

The first Borat film, released in 2006, was banned in

takhetan's tourism board has adopted the

Research Questions

What is the current state of serverless applications and their performance?

RQ3

RQ1

How can limitations of benchmarking cloud infrastructure be addressed?

Contributions Overview

RQ1: Current state of serverless

Paper α (JSS'19) Performance evaluation literature review

Paper β (TSE'21) **Application characteristics** sample study

RQ2: Serverless application performance

Paper v (journal submission) ServiTrace application benchmarking suite

Paper \delta (conference submission) CrossFit: Cross-provider application benchmarking

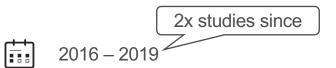
Paper ε (IC2E'22) **TriggerBench:** Function trigger benchmark

RQ3: Limitations of cloud benchmarking

Paper ζ (QUDOS'18) Integrated micro and application benchmark suite

Paper n (CLOUD'18) Application performance

Paper θ (EMSE'19) Reliable cloud benchmarking



RQ1: Current State of Serverless

Literature review $[\alpha]$

112 serverless performance studies

51 academic	61 grey literature

Studies and their design \rightarrow Secondary research

Sample study [ß]

(A) ≈ 89 serverless applications (C)
 (C)

22 characteristics

Triangulate with 10 related sources

Documentation and code \rightarrow Primary research

 α Function-as-a-Service Performance Evaluation: A Multivocal Literature Review. JSS'20.

 β The State of Serverless Applications: Collection, Characterization, and Community Consensus. TSE'21.

RQ1: Current State of Serverless

Benchmark Type [α]

Micro-benchmarks

Application-benchmarks

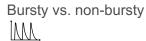
External Service

Database used in performance studies [α]

Database *found* in real applications [β]

Reproducibility [a]

40% Su	ufficient experimenta	l setup descrip	otion 📳
--------	-----------------------	-----------------	---------



α Function-as-a-Service Performance Evaluation: A Multivocal Literature Review. JSS'20.

β The State of Serverless Applications: Collection, Characterization, and Community Consensus. TSE'21.

Workload Burstiness [β]

84%

Contributions Overview

RQ1: Current state of serverless

Paper α (JSS'19) Performance evaluation literature review

Paper β (TSE'21) **Application characteristics** sample study

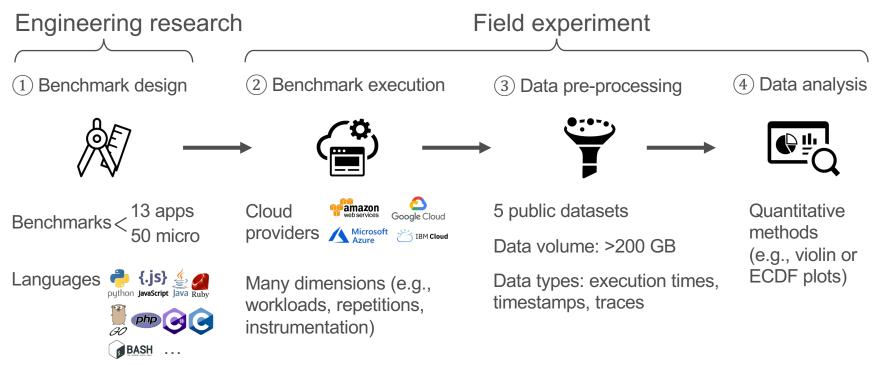
RQ2: Serverless application performance

Paper y (journal submission) ServiTrace application benchmarking suite

Paper \delta (conference submission) CrossFit: Cross-provider application benchmarking

Paper ε (IC2E'22) **TriggerBench:** Function trigger benchmark

RQ3: Limitations of cloud benchmarking

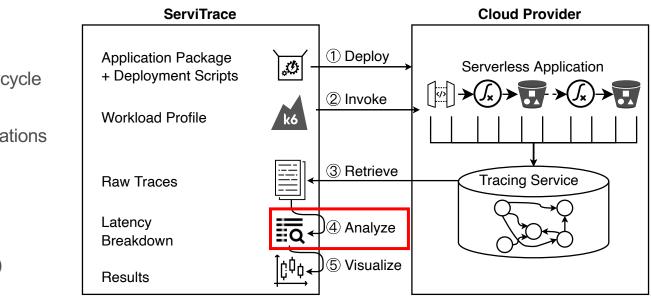

Paper ζ (QUDOS'18) Integrated micro and application benchmark suite

Paper n (CLOUD'18) Pro Application performance

Paper θ (EMSE'19) Reliable cloud benchmarking

RQ3: Limitations of Cloud Benchmarking

ServiTrace [y]

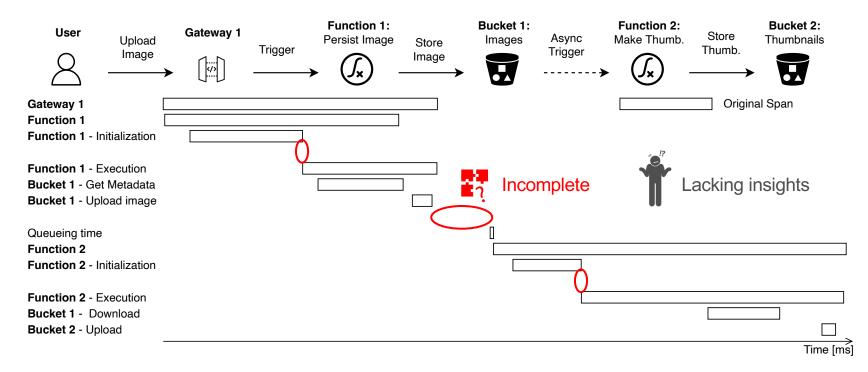

Automates full benchmarking lifycycle

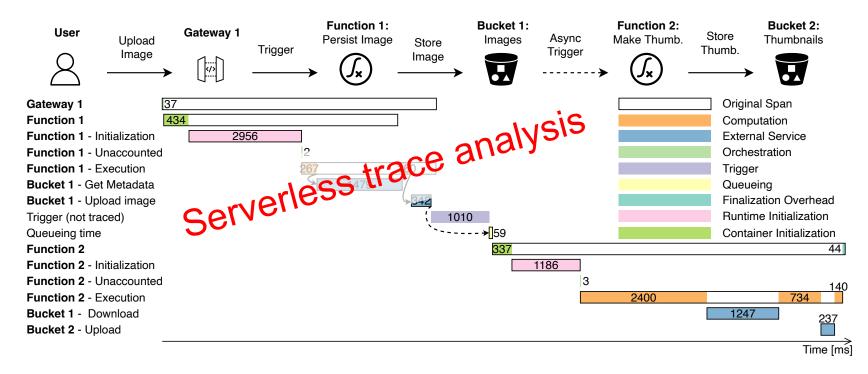
|--|

10 diverse applications (based on RQ1)

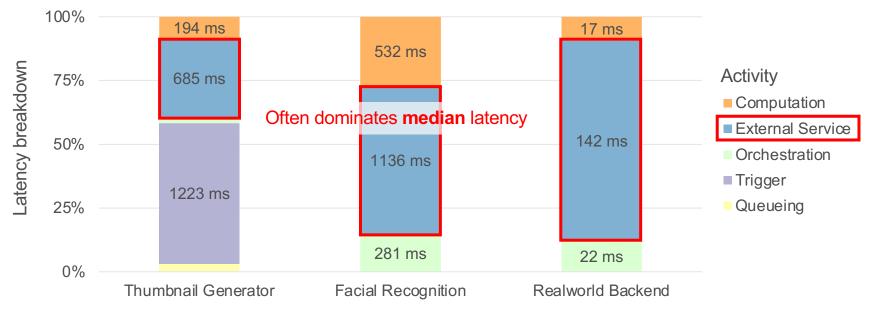
 \odot

Well-tested (unit, integration, 7.5 million traces)


γ Let's Trace It: Fine-Grained Serverless Benchmarking for Synchronous and Asynchronous Applications. Under submission to a journal.


γ Let's Trace It: Fine-Grained Serverless Benchmarking for Synchronous and Asynchronous Applications. Under submission to a journal.

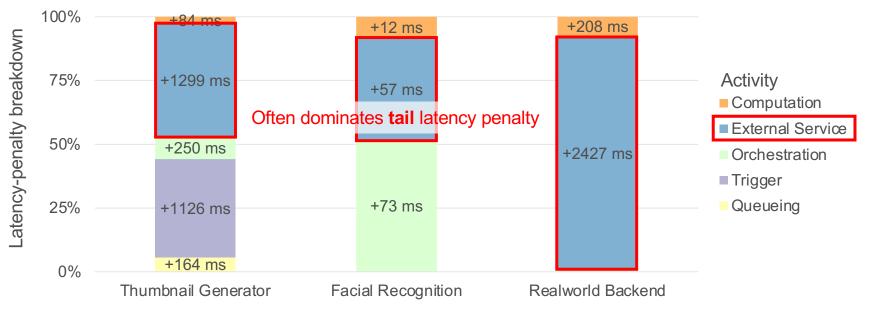
γ Let's Trace It: Fine-Grained Serverless Benchmarking for Synchronous and Asynchronous Applications. Under submission to a journal.


γ Let's Trace It: Fine-Grained Serverless Benchmarking for Synchronous and Asynchronous Applications. Under submission to a journal.

UNIVERSITY OF GOTHENBURG

RQ2: Serverless Application Performance

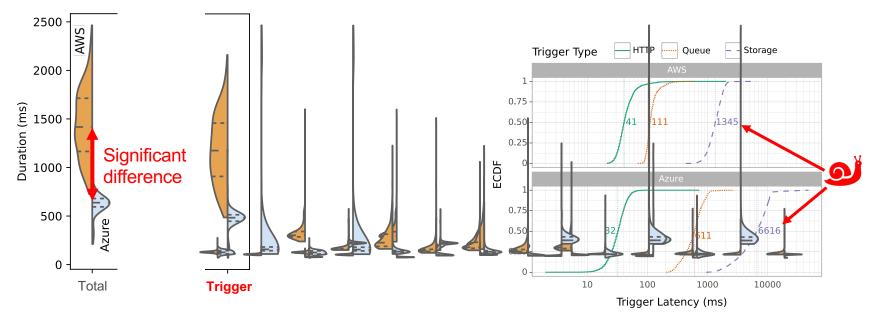
Median Latency (50th percentile)


γ Let's Trace It: Fine-Grained Serverless Benchmarking for Synchronous and Asynchronous Applications. Under submission to a journal.

UNIVERSITY OF GOTHENBURG

RQ2: Serverless Application Performance

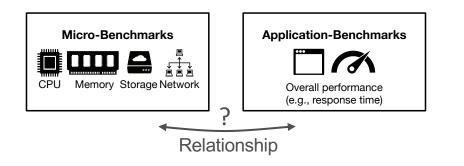
Tail Latency (99th percentile)

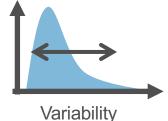

γ Let's Trace It: Fine-Grained Serverless Benchmarking for Synchronous and Asynchronous Applications. Under submission to a journal.

PhD Defense Joel Scheuner

CrossFit [δ]: Cross-provider application insights

TriggerBench [ε]: Latency of trigger types


 δ CrossFit: Fine-grained Benchmarking of Serverless Application Performance across Cloud Providers. Under submission to a conference


ε TriggerBench: A Performance Benchmark for Serverless Function Triggers. IC2E'22. To appear as short paper.



RQ3: Limitations of Cloud Benchmarking

Depends on benchmark and environment

Often possible with repetitions within and across virtual machines

Slowdown detection

η Estimating Cloud Application Performance Based on Micro-Benchmark Profiling. CLOUD'18.

Selected micro-benchmarks are better

static baselines.

application performance predictors than

 $\boldsymbol{\theta}$ Software Microbenchmarking in the Cloud. How Bad is it Really? EMSE'19.

Results Summary

RQ1: Current state of serverless

Synthetic micro-benchmarks have been studied extensively but we need more realistic application-benchmarks that integrate with external services.

RQ2: Serverless application performance

External service calls and trigger-based function coordination are often slow and suffer from long tail latency.

RQ3: Limitations of cloud benchmarking

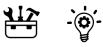
Only selected micro-benchmarks are suitable for application performance estimation and repetitions at different levels should be used for reliable performance testing.

UNIVERSITY OF GOTHENBURG

Take-Away

Enables reproducible performance evaluation of serverless applications and their underlying cloud infrastructure.

Conclusions



Design better cloud performance studies

Improve the performance of serverless applications

All artefacts are available

Joel Scheuner

⊠ scheuner@chalmers.se

() Y joe4dev

Ø joelscheuner.com

Credits

Icons created by:

- Freepik, Becris Flaticon
- Puckung graphic design factory Iconfinder
- Documentation by Eucalyp, Graph by Wuppdidu, serverless by Juicy Fish from <u>Noun Project</u>