An Approach and Case Study of Cloud
Instance Type Selection for Multi-Tier Web
Applications

Christian Davatz, Christian Inzinger, Joel Scheuner, Philipp Leitner

University of Zurich, Switzerland

Universitat S eA aA IA
Ll Ziirich™ Yy NV

Selecting laaS instance types

amazon
webservices™

EC2

Instance

Type

t2.micro

t2.small

t2.medium

m3.medium

ma3.large

m3.xlarge

m3.2xlarge

vCPU

Memory Storage

(GiB)

3.75

7.5

15

30

Instance Types Matrix

(GB)
EBS
Only

EBS
Only

EBS

Only

1x4
SSD

1x32
SSD

2x40
SSD

2x80
SSD

Networking
Performance

Low to Moderate

Low to Moderate

Low to Moderate

Moderate

Moderate

High

High

is hard!

Physical

Processor

Intel Xeon

family

Intel Xeon

family

Intel Xeon

family

Intel Xeon
E5-2670
ve*

Intel Xeon
E5-2670
ve*

Intel Xeon
E5-2670
ve*

Intel Xeon
ES-2670
ve*

Clock Intel®

Speed AES-

(GH2) NI
2.5 Yes
2.5 Yes
2.5 Yes
2.5 Yes
2.5 Yes
2.5 Yes
2.5 Yes

Intel®
AvXT

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Intel® EBS

Turbo

Yes

Yes

Yes

Yes

Yes

Yes

Yes

OPT

Yes

Yes

Enhanced

Networking

Common Questions

What cloud provider should I choose?

Should I go for many small or few large instances?

General-purpose or *-optimized?

Pay for better IOPS or not?

= Need for Benchmarking

Existing Benchmarking Work

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 6, JUNE 2011 s

Performance Analysis of Cloud Computing
Services for Many-Tasks Scientific Computing

Alexandru losup, Member, IEEE, Simon Ostermann, M. Nezih Yigitbasi, Member, IEEE,
Radu Prodan, Member, IEEE, Thomas Fahringer, Member, IEEE, and Dick H.J. Epema, Member, IEEE

Abstract—Cloud computing Is an emerging commercial infrastructure paradigm that promises 1o elminate the need for maintaining
axpensive computing faciinies by companies and nstitutes alke, Through the use of virtualzation and rescurce time sharing, clowds
sarve with a single set of physical resources a large user base with cifferent neacs. Thus, clouds have the potential 1o provide o their
awners the benefts of an economy of scale and, at the same tme, becoma an akernaive for scentists 10 dusiers, gnds, and parallel
procuction environments, However, the curren! commerdial clouds have baen buill to support web and small database workloads,
which are very different from typical scientfic computing workicads. Maoraover, the use of virtualzation and resource time sharing may
introcuce sigrifican! pecformance penalties for the demanding scentific compuling workloads. In this work, we analyze the
performance of clowd computing services for scientific computing workicads. We quantify the presence in real scientific computing
workloacs of Mary-Task Computing (MTC) users, that is, of users who employ leosely coupled applications compriging many 1asks to
achieve ther scentific goals. Than, we perform an emgpinical avaluation of the performance of four commarcial cloud compuiing
sanices including Amazon EC2, which is currently the largest commercial doud. Last, we compare through trace-basad simulation the
performance characteristics anc cast models of douds and other sclentific computing platforms, ‘or general and MTC-based scientific
computing workloacs. Cur results indicate that the current clouds need an order of magritude in performance improvement o be
useful 1o the scientific community, and show which improverments should be considered first 1o address this discrepancy between offer
ard demand,

Index Terms—Distributed sysiems, distributed applicaions, pecformance evaluation, metrics/maasurement, performance measures.,

+

1 INTRODUCTION

Sc_ [ENTIFIC computing requires an ever-increasing number The cloud computing paradigm holds great promise for
of resources to deliver results for ever-growing problem the performance-hungry sclentific computing community:
sizes in a reasonable time frame. In the last decade, while Clouds can be a cheap alternative to supercomputers and

cnacdalimad Alucbave & maciah mvaes walishla wlafaves thaan

- Existing Benchmarking Work

Performance Analysis of Cloud Computing

Services for Mar

Aloaw
Alexandru losup, M
=

S
Radu Prodan, Member, IEEE, Thom:

Index Terms—Distributec systems, distribute

1 INTRODUCTION

E i NTIFIC computing requires an ever-ing
of resources 1o deliver results for ever-g

S VA S A Z'.‘.l'-.'ll.:l’.: time frame. In the

Patterns in the Chaos—A Study of Performance Variation
and Predictability in Public laaS Clouds

PHILIPP LEITNER and JURGEN CITO, Department of Informatics, University of Zurich

Benchmarking the performance of public cloud providers is a common research topic. Previous work has
already extensively evaluated the performance of different cloud platforms for different use cases, and
under different constraints and experiment setups. In this article, we present a principled, large-scale
literature review to collect and codify existing research regarding the predictability of performance in public
Infrastructure-as-a-Service (IaaS) clouds. We formulate 15 hypotheses relating to the nature of performance
variations in Iaa$S systems, to the factors of influence of performance variations, and how to compare different
instance types. In a second step, we conduct extensive real-life experimentation on four cloud providers to
empirically validate those hypotheses. We show that there are substantial differences between providers.
Hardware heterogeneity is today less prevalent than reported in earlier research, while multitenancy has
a dramatic impact on performance and predictability, but only for some cloud providers. We were unable to
discover a clear impact of the time of the day or the day of the week on cloud performance.

Categories and Subject Descriptors: H.3.4 [Systems and Software]: Distributed Systems
General Terms: Experimentation, Measurement, Performance
Additional Key Words and Phrases: Infrastructure-as-a-service, public cloud, benchmarking

ACM Reference Format:

Philipp Leitner and Jiirgen Cito. 2016. Patterns in the chaos—A study of performance variation and pre-
dictability in public IaaS clouds. ACM Trans. Internet Technol. 16, 3, Article 15 (April 2016), 23 pages.
DOI: http://dx.doi.org/10.1145/2885497

1. INTRODUCTION

In an Infrastructure-as-a-Service (IaaS) cloud [Armbrust et al. 2010], computing re-
sources are acquired and released as a service, typically in the form of virtual machines
with attached virtual disks [Buyya et al. 2009]. Cloud benchmarking, that is, the pro-

Existing Benchmarking Work

Performance Analysis of Cloud Computing

Services for Mar

Alexandru losup, Member, IE
Radu Prodan, Member, IEEE, Thom:

Abstract—Clouc computing 18 an emerging ¢

sarvices for
y-Task Computing (MTC) us
Achieve ther soe -A,nlk.-.]1’.’. 5 h BN, We :‘""..-.(

sarices inchuding Amazon EC2, whict

performance charactenstics anc cast models
computing workloacs. Cur results indicate ths
useful 10 the scientific community, and show w

and demand

Index Terms—Distrisutec systems, distribute

1 INTRODUCTION

E i NP compuling requires an ever-un
of resources to deliver results for ever-g
E

sizes In a reasonable time frame. In the las

Patterns.in the. Cha
and Predictability i

PHILIPP LEITNER and |

Benchmarking the performar
already ‘extensively evaluate
under different constraints ¢
literature review to collect am
Infrastructure-as-a-Service (I
variationsin IaaSsystems;to
instance types. In a second st
empirically validate those hy
Hardware heterogeneity is to
a 'dramatic impact on perforn
discover a clear impact of the
Categories and Subject Descr:
General Terms: Experimentat
Additional Key Wordsjand Ph

ACM Reference Format:

Philipp Leitner-and Jirgen (
dictability in public IaaS clou
DOI: http://dx.doi.org/10.1145

1. INTRODUCTION
In an Infrastructure-as

sources are acquired an
with attached virtual di

Benchmarking Cloud Serving Systems with YCSB

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, Russell Sears

Yahoo! Research
Santa Clara, CA, USA
{cooperb,silberst,etam,ramakris,sears}@yahoo-inc.com

ABSTRACT

While the use of MapReduce systems (such as Hadoop) for
large scale data analysis has been widely recognized and
studied, we have recently seen an explosion in the number
of systems developed for cloud data serving. These newer
systems address “cloud OLTP” applications, though they
typically do not support ACID transactions. Examples of
systems proposed for cloud serving use include BigTable,
PNUTS, Cassandra, HBase, Azure, CouchDB, SimpleDB,
Voldemort, and many others. Further, they are being ap-
plied to a diverse range of applications that differ consider-
ably from traditional {e.g., TPC-C like) serving workloads.
The number of emerging cloud serving systems and the wide
range of proposed applications, coupled with a lack of apples-
to-apples performance comparisons, makes it difficult to un-
derstand the tradeoffs between systems and the workloads
for which they are suited. We present the Yahoo! Cloud
Serving Benchmark (YCSB) framework, with the goal of fa-
cilitating performance comparisons of the new generation
of cloud data serving systems. We define a core set of
benchmarks and report results for four widely used systems:
Cassandra. HBase. Yahoo!'s PNUTS. and a simple sharded

ers (3, 5, 7, 8]. Some systems are offered only as cloud
services, either directly in the case of Amazon SimpleDB [1]
and Microsoft Azure SQL Services [11], or as part of a pro-
gramming environment like Google’s AppEngine [6] or Ya-
hoo!’s YQL [13]. Still other systems are used only within a
particular company, such as Yahoo!’s PNUTS [17], Google's
BigTable [16], and Amazon’s Dynamo [18]. Many of these
“cloud” systems are also referred to as “key-value stores” or
“NoSQL systems,” but regardless of the moniker, they share
the goals of massive scaling “on demand” (elasticity) and
simplified application development and deployment.

The large variety has made it difficult for developers to
choose the appropriate system. The most obvious differ-
ences are between the various data models, such as the
column-group oriented BigTable model used in Cassandra
and HBase versus the simple hashtable model of Voldemort
or the document model of CouchDB. However, the data
models can be documented and compared qualitatively. Com-
paring the performance of various systems is a harder prob-
lem. Some systems have made the decision to optimize for
writes by using on-disk structures that can be maintained us-
ing sequential I/O (as in the case of Cassandra and HBase),

B Basic Approach to Benchmarking Clouds I

- A

provision

> R
Benchmark | ., benchmark |/
Manager > Instance
results
) destroy)

\ J

Used for instance in:

§Phi|ipp Leitner and Jurgen Cito. 2016. Patterns in the Chaos — A Study of Performance
:Variation and Predictability in Public IaaS Clouds. ACM Trans. Internet Technol. 16, 3,
:Article 15 (April 2016), 23 pages. DOI: http://dx.doi.org/10.1145/2885497

--

§Joe| Scheuner, Jurgen Cito, Philipp Leitner, Harald C. Gall (2015). Cloud WorkBench:
:Benchmarking IaaS Providers Based on Infrastructure-as-Code. In Proceedings of the
: 24th International Conference on World Wide Web, pp. 239-242, New York, NY, USA.

http://dx.doi.org/10.1145/2885497

~ For Multi-Tier (Application) Benchmarks

acquire :
1 »| Provider
API
Benchmark MNoud Provider under Test)
Manager
4 N 4 ™
Benchmark request
resuyts : > - System under Test
Driver response
o 4 o J
A A /
provision provision
Provisioner

A Concrete Instantiation

5
=
B Vagrant
=
Q
9]
CWB Server

acquire |r___.___-i
)I Provider }
1 AP |
T S
/ .
, [aaS Provider
I start-up
- - . p—
N \ g \
I I DRIVER I I SUT I
. | N |
|
|| IMeter Slave | request |
I I TeSt Pla% S Chef Client J \’\Cll'i\ I
| respohse |
I I =1 IMeter h results A \ P I I I
| .8 | AcmeAir
I I @) Master 4_; JMeter Slave < ! —> .. MongoDB I
I o ’—‘Ch - i] Webapplication |
I | % \ \ ° A el < | I Chef Client Chef Client I
I ; .
I I Chef Client| \ / A A I
I A JMeter Slave | I |
I { | Chef Client) : | I
I\ S I / ‘\ ____________________________ /
\ _____________________ o e e S S S G . G S S S S S I I S S S S S S G G S G S S S S S G S S S S S e — e — — — — — -
provision provision provision provision

Chef Server

AcmeAir

& C @ 10.20.82.87:9080/loader.html

TWO~Tier App

Flights, Baggage, and Loyalty all with a Smile

|ACﬁOHSi Acme Air Home Load the database Runtime Info

Acme Air Database Loader A A
m 1r
The loader to the 'mongo’ data service. c e. . > MongODB
Webapplication
Loader Configuration Chef Client Chef Client
Number of Customers to Load: 10000
0 — N

\ Load the Database \

Acme Air Home.

y

https://github.com/acmeair/acmeair

CBW

Code:
https://github.com/
sealuzh/cloud-
workbench

Demo:
https://
www.youtube.com/
watch?v=0yGFGvHvobk

:J. Scheuner, P. Leitner, J. Cito and H.C. Gall: Cloud Work Bench - Infrastructure-as-
:Code Based Cloud Benchmarking 2014 IEEE 6th International Conference on Cloud

: Computing Technology and Science, Singapore, 2014, pp. 246-253. doi: 10.1109/
:CloudCom.2014.98

https://github.com/sealuzh/cloud-workbench
https://github.com/sealuzh/cloud-workbench
https://github.com/sealuzh/cloud-workbench
https://www.youtube.com/watch?v=0yGFGvHvobk
https://www.youtube.com/watch?v=0yGFGvHvobk
https://www.youtube.com/watch?v=0yGFGvHvobk

CBW

SXPRTIne B CWB Server Provider API Cloud VM gt Ll
Scheduler Service
E—Trigger Execution -PE E E E
. —— Acquire Resources —>, . :
; : Provision VM »5 |
. ; . ;— Fetch VM Configurations -b.
<- - - - VM Configurations - - - - =
5 5 5 " Aop) WM Configurat |
| ' ' ' onfigurations
: : : «— : :
5 GERELLLL VM Provisioning Completed --=------- | 5
E : Start Benchmark Run > ~ E
1 ' 1 ! Run BenChmark !
. ; : —— .
; «4———— Notify Benchmark Completed ; :
| ' g — !
: : : ' Postprocess Results !
; ¢ Submit Metric(s) ; !
—— Notify Postprocessing Completed

—— Release Resources —>!

:J. Scheuner, P. Leitner, J. Cito and H.C. Gall: Cloud Work Bench - Infrastructure-as-
:Code Based Cloud Benchmarking 2014 IEEE 6th International Conference on Cloud

: Computing Technology and Science, Singapore, 2014, pp. 246-253. doi: 10.1109/
:CloudCom.2014.98

L Research Questions |

RQ I What sustained performance, measured in throughput of successful
requests per second, can we achieve with each configuration?

RQZ: Can we observe statistically significantly different performance for
each configuration?

RQ3

Which configuration is the most cost-effective way to host AcmeAir
for the defined workload?

Used Configs

Configuration @ Webapp DB Costs # of Runs
ceC Me lcr|
EC2
A_gp2_1 m4.large t2.small $0.173 37
A_gp2_2 m4.large m3.medium $0.222 27
A_gp4 m4.xlarge t2.small $0.315 23
A _co2_1 c4.large t2.small $0.164 35
A_co2_2 c4.large m3.medium $0.213 26
A_cod c4.xlarge t2.small $0.297 19
GCE
G_gpl nl-standard-1 nl-standard-1 $0.110 26
G_gp2 nl-standard-2 nl-standard-1 $0.165 26
G_gp4 nl-standard-4 nl-standard-1 $0.270 24
G_co2 nl-highcpu-2 nl-highcpu-2 $0.168 18
G_co4 nl-highcpu-4 nl-standard-1 $0.223 23

Used Configs

: A_gp2_1
|
m4.large t2.small
A_gp2. 2

mé.xlarge t2.small

.

md.large

m3.medium

~ Used Metric ‘

“Sustainable
Throughput”

3500 R T S S -

000 T—_— “ ------- E— T — — :

ZL10] I USRS O SO SSRSRPIY A SUSO1 YJY

wn
A
= 2000 |-

1500 -

1000 -

500 |- e s e el .

| | | |
100 150 200 250 300
duration in seconds

— Agp21 — G_gp2
— A gp4 — G_gp4

Results

RQI + RQ2

3000 I I I I I I I I I I I

2500

2000 | ﬁ — T +

—_— —_—
’83 1500 T +
5 = ==
= —-
==
+
500 + +
A gp21 A gp2 2 A gp4 A co2 1 A co2 2 A cod G gpl G _gp2 G gp4 G co2 G _co4
37 27 23 35 26 19 26 26 24 18 23

RQ3

Metric: Mio. Requests per $

Results

Configuration Avg. Throughput Costs Mio. Requests Rank
per $

ceC SRPS. Me PCic
A_coZ2_1 1417.09 $0.164 31.107 1
G_cod 1791.98 $0.223 28.929 2
A_cod 2192.07 $0.297 26.571 3
A_gp2_1 1247.37 $0.173 25.957 4
G_gp4 1888.37 $0.270 25.178 5
A_co2_2 1472.01 $0.213 24.879 6
G_gp2 1102.49 $0.165 24.054 7
G_gpl 722.21 $0.110 23.636 8
G_coZ 1095.28 $0.168 23.470 9
A_gp4 1939.74 $0.315 22.168 10
A_gp2 1302.83 $0.222 21.127 11

| Lessons Learned |

Importance of Benchmarking

Least cost-effective instance type only about 67% of perf/ $ of best
configuration

No clear ‘“cheap” cloud provider

Comparable offerings from different providers are similarly cost-
effective

No easy rules of thumb

Compute-optimized instances may be better for our workload, but
results vary

Summary

\

A ——— e ——————————————————————————_—_—

acquire |r ______ 1
5 >I Provider |
=]
b Vagrant AR e
S Vi . -
? g [aaS Provider
i start-up
sy eccpummepa
I M (3
I I DRIVER I | SUT I
| | | |
I I JMeter SI I I I
CWB Server ' it Pl cter Slave requlest
| N I
I I = | JMeter results A respoillse I I
| | & | I A Al
I I O Master < > JMeter Slave Cme- 11'. MongoDB I
<o oot Gt <3 I Webapplication |
I I % \ ¢ Am[| | Chef Client Chef Client I
[|
I I Chef Client| \ / A A I
[A JMeter Slave I I I
I Il Chef Client I | I
|\ N R Y A R / l\ ____________________________ /
\\ ____________________ s (e il — ———————————————————— ——— ———————————————————— -
provision provision provision provision
Chef Server

(5]
|51
o
%)

CWB Server

Y

Summary

o < Configuration = Webapp DB Costs # of Runs
e 1] ceC Me ler|

i EC2

st A_gp2_1 m4.large t2.small $0.173 37
A_gp2_2 m4.large m3.medium $0.222 27
A_gp4 m4.xlarge t2.small $0.315 23
A_co2_1 c4.large t2.small $0.164 35
A_co2_2 c4.large m3.medium $0.213 26
A_cod4 c4.xlarge t2.small $0.297 19
GCE
G_gpl nl-standard-1 nl-standard-1 $0.110 26
G_gp2 nl-standard-2 nl-standard-1 $0.165 26
G_gp4 nl-standard-4 nl-standard-1 $0.270 24
G_co2 nl-highcpu-2 nl-highcpu-2 $0.168 18
G_co4 nl-highcpu-4 nl-standard-1 $0.223 23

o

3000

2500

2000

1000

500

acquire

Summary

1 = Configuration = Webapp DB Costs # of Runs
3 - : ceC Me e
A_gp2_1 m4.large t2.small $0.173 37
I [
[
!
L +
| T
- — — . ’
. . ==
JR —
= ==)
B - +
==
+
- +
Agp21 A gp2 2 A _gp4 A co2 1 A co2 2 A _co4d G gpl G _gp2 G gp4 G co2 G _co4
37 27 23 35 26 19 26 26 24 18 23

’m Hiring!

Talk to me if you
are interested in
doing a PhD in

Gothenburg, Sweden! CHALMERS

UNIVERSITY OF TECHNOLOGY

Edinburgh
eeeeeeeeeee
@

sagow =~~~ Denmark
United
Kingdom
'Ma
Manchester Hamburg R
Liverpool ‘]
e'lin/\ Poland
mmmmmmmmm 5) W
eeeeeeee ds)
’\y . S\
Grasse! ?io!o Germany /JJ‘S—}\}—,L\‘
lllllllllllllllll ~ “Prague 2\13\
Wiva § ® Lo
uuuuuuuuuu \
- \ Czechia <N iy
\-._,L_ \ J Ly ~
/ MUt)}tﬂ' |e_r/1n{ | vakia/, e
(fo} 'd (C] \\ I~

