
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

The State of Serverless Applications: Collection,
Characterization, and Community Consensus

Simon Eismann, Joel Scheuner, Erwin van Eyk, Maximilian Schwinger, Johannes Grohmann,
Nikolas Herbst, Cristina Abad, Alexandru Iosup

Abstract—Over the last five years, all major cloud platform providers have increased their serverless offerings. Many early adopters
report significant benefits for serverless-based over traditional applications, and many companies are considering moving to serverless
themselves. However, currently there exist only few, scattered, and sometimes even conflicting reports on when serverless applications
are well suited and what the best practices for their implementation are. We address this problem in the present study about the state
of serverless applications. We collect descriptions of 89 serverless applications from open-source projects, academic literature,
industrial literature, and domain-specific feedback. We analyze 16 characteristics that describe why and when successful adopters are
using serverless applications, and how they are building them. We further compare the results of our characterization study to 10
existing, mostly industrial, studies and datasets; this allows us to identify points of consensus across multiple studies, investigate points
of disagreement, and overall confirm the validity of our results. The results of this study can help managers to decide if they should
adopt serverless technology, engineers to learn about current practices of building serverless applications, and researchers and
platform providers to better understand the current landscape of serverless applications.

F

1 INTRODUCTION

S ERVERLESS computing is an emerging technology with
increasing impact on our modern society, and increasing

adoption by academia and industry [1], [2], [3]. The key
promise of serverless computing is to make computing
services more accessible, fine-grained, and affordable [4],
[5], by having the infrastructure manage all operational
concerns [6]. Major cloud providers, such as Amazon, Mi-
crosoft, Google, and IBM, already offer capable serverless
platforms with well-defined responsibilities and pricing.
However, serverless computing, and its common Function-
as-a-Service (FaaS) realization, still raises many important
challenges that may reduce adoption. These challenges have
been recognized and discussed in fields such as software
engineering, distributed systems, and performance engi-
neering [7], [8], [9]. An important challenge that remains
open is to present a clear view on the state of serverless
applications for managers, engineers, and scientists. This
work proposes a mixed-method approach to understand the
state of serverless applications.

There exist only few, scattered, and sometimes conflict-
ing reports addressing important questions such as Why de-
velopers build serverless applications?, When are serverless appli-
cations useful?, or How are serverless applications implemented

• Simon Eismann, Johannes Grohmann, and Nikolas Herbst are with the
Department of Software Engineering, University of Würzburg, Germany.
E-mail: firstname.lastname@uni-wuerzburg.de

• Joel Scheuner is with the Division of Software Engineering, Chalmers |
University of Gothenburg, Sweden. Email: scheuner@chalmers.se

• Alexandru Iosup and Erwin van Eyk are with the Massivizing Computer
Systems at the Vrije Universiteit Amsterdam. Email: A.Iosup@atlarge-
research.com and E.vanEyk@atlarge-research.com

• Maximilian Schwinger is with the Department of Software Engineering,
University of Würzburg, Germany, and the German Aerospace Center.
Email: maximilian.schwinger@dlr.de

• Cristina L. Abad is with the Department of Electrical Engineering and
Computer Science at Escuela Superior Politecnica del Litoral, Ecuador.
Email: cabadr@espol.edu.ec

in practice? For example, although some report significant
cost-savings by switching to serverless applications [10],
[11], others identify in some scenarios a higher cost com-
pared to traditional hosting [12]. Similarly, although reports
of successful serverless applications for data-intensive ap-
plications exist [13], [14], other reports claim that serverless
is not well suited for data-intensive applications [9]. As a
third and last example, although a recent study differenti-
ates between containers and serverless and finds the former
to be preferable for latency-critical tasks [15], others see
them as connected [16], [17] or report successfully applying
serverless to latency-critical, user-facing traffic [18]. Having
concrete information on these topics would be valuable for
developers, to guide decisions on whether serverless is a
suitable paradigm for their specific application.

However much needed, systematic studies about server-
less applications still do not exist. For serverless computing,
existing research has focused on serverless platforms and
their performance properties [19]. Pioneering studies about
the features, architecture, and performance properties of
these platforms [20], [21], [22], [23], [24], [25] do not study
systematic collections of applications. Shahrad et al. [26]
characterize the aggregated performance properties of the
entire production FaaS workload from Microsoft Azure
Functions, but do not provide details on individual appli-
cations. A recent mixed-method empirical study investi-
gates how developers use serverless computing, focusing
on mental models and the issues (pain points) develop-
ers experience [27]. Another multivocal literature review
discusses simple patterns common in the architecture of
serverless applications [28], but do not analyze the applica-
tions themselves. The only existing collection of serverless
applications is linked to an article by Castro et al. [6],
which introduces ten applications collected from non-peer-
reviewed (industrial) literature.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of

any copyrighted component of this work in other works. This article has been accepted for publication in a future issue of IEEE Transactions on Software
Engineering. The definitive Version of Record is available at https://doi.org/10.1109/TSE.2021.3113940.

https://doi.org/10.1109/TSE.2021.3113940

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

Scientific
Computing

2 Researchers

22 Characteristics

83 Serverless
Applications

Review 1

Review 2

89 Analyzed
Serverless Applications

6 Serverless
Applications

Review

Domain Expert

Open-source
Projects

Academic
Literature

Industrial
Literature

Discussion and
Consolidation32

23

28

1

2

3

4

Fleiss' kappa

A

B

C

D

E

Fig. 1: Methodology for serverless application collection (left part, Section 2) and characterization (right part, Section 3).

This article makes three main contributions towards
furthering the understanding of serverless applications:

1) Systematic collection of serverless applications, the
largest to date (in Section 2): Building on resources
created by the community [29], [30], we systematically
collect a total of 89 serverless applications from four
different sources. 32 applications are from open-source
projects, 23 from academic literature, 28 from industrial
literature, and 6 from the area of scientific computing;
this is the largest collection of serverless applications to
date, by a factor of 8.9x over the next largest [6].

2) First systematic and comprehensive characterization
of serverless applications (in Section 3): We charac-
terize each application from our collection, through a
systematic and comprehensive pair-reviewing process,
with regard to 16 characteristics, such as execution
pattern, workflow coordination, use of external ser-
vices, and motivation for adopting serverless. We have
presented a small subset of these results for general
magazine audience [31], but here we present the techni-
cal details and identify for the first time where server-
less helps (e.g., from APIs to batch processing), com-
mon traffic patterns for serverless applications, work-
flow complexity and coordination, etc. The underlying
dataset is described in detail in our technical report [32].

3) First analysis of community consensus (in Section 4):
To understand whether the community can reach con-
sensus across its attempts to characterize serverless
applications, we systematically contrast our and previ-
ous community results. We conduct a literature search,
finding 10, mostly industrial, web surveys and datasets
on the characteristics of serverless applications. Next,
we compare the results of these studies to this study,
to identify characteristics for which there is a con-
sensus among multiple studies and investigate points
of disagreement (which give opportunities for further
research).

2 SERVERLESS APPLICATION COLLECTION

In this section, we create a process to collect serverless
applications, and show the main result of using it—the
largest public collection of serverless applications, to date.

2.1 Methodology

Serverless applications have been described in many kinds
of materials written for experts including peer-reviewed
academic publications, open-source projects, blog posts,
podcasts, talks, and provider-reported success stories. The
field is only a few years old, so any of these types of
materials could include meaningful and unique material.
We aim to create a process for collecting a large amount of
descriptions of serverless applications, spanning this range
of materials judiciously and without a strong selection bias
toward one or another. Our aim is not that the process
should be exhaustive; doing so while the field is still grow-
ing and new applications are still emerging would not be
useful long-term. Figure 1 shows the result of our use of
this process—a large, varied sample, obtained from the
following sources:

• Open-source projects (Figure 1, component A): We
start with an existing dataset on open-source serverless
projects [29]. We remove small and inactive projects
based on the number of files, commits, contributors,
and watchers. Next, we manually filter the resulting
dataset to retain only projects that implement serverless
applications. Finally, we select only projects that have
an active and appreciative community (projects with
over 50 stars). This results in a set of 32 serverless
applications from open-source projects.

• Academic literature (Figure 1, B): We base our search
on an existing, community-curated dataset on literature
for serverless computing of over 180 peer-reviewed
articles [30]. As the authors are familiar with 5 addi-
tional publications describing serverless applications,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

Vending
Machine

Payment
Gateway

API
Gateway

Lambda
Function

Mobile
Phone

(a) Vending machine backend at Coca-Cola.

Kinesis
Stream

S3 File
Upload

SNS
Notification

Lambda
Function

Lambda
Function

Lambda
Function

SQS
Queue

DynamoDB
Table

Slack
Notification

S3
File

Lambda
Function

DynamoDB
Table

S3
File

SQS
Queue

Kinesis
Firehose

Lambda
Function

Athena
Analytics

Input Output

Search

Parsing and Rule Analysis

(b) StreamAlert by AirBnB.

Fig. 2: Two examples of serverless applications from our collected dataset of 89 serverless applications.

we contribute them to the community-curated dataset
and include them in this study. We first filter all the arti-
cles based on title and abstract, and remove any articles
that implement only a single function for evaluation
purposes or do not include sufficient detail to enable a
review. This results in 23 serverless applications from
academic literature.

• Industrial literature (Figure 1, C): There are many blog
posts by companies or individuals, talks at industry
conferences, and provider-reported success stories that
describe serverless applications. We filter the case stud-
ies reported by the major serverless providers (AWS,
Azure, Google, and IBM) and select from them solu-
tions that depend on serverless technology. We also in-
clude the 10 applications reported in a recent article [6],
which until this work is the largest public collection
of serverless applications from industrial literature. We
further extend this collection with industrial litera-
ture describing serverless applications in main indus-
try events (e.g., KubeCon), etc. This process results in
28 serverless applications from industrial literature.

• Scientific computing (Figure 1, D): The scientific com-
puting community is showing increasing interest in
serverless solutions (e.g., at NASA [33] and CERN [34]).
However, most of these applications are still at an
early stage, with scarce public information. To address
this deficit of public data, we collect and include in
this work information from the German Aerospace
Center (DLR) and from the German Electron Syn-
crotron (DESY). This results in 6 serverless applications
from the area of scientific computing.

For each of these sources, we use the same predefined
inclusion (I) and exclusion (E) criteria to determine if an
application should be included in our dataset:

I1 Concrete application. Real world use is a plus.

I2 Application description has sufficient detail to conduct
meaningful review. (Exclude high-level descriptions
that lack technical detail.)

E1 Serverless platforms and frameworks, as these are not
serverless applications.

E2 Boilerplate code and simple technology demonstra-

tions, as they do not constitute real-world applications.

I3/E3 Include only one out of multiple academic papers
describing the same use case. For example, many aca-
demic papers discuss serverless neural network serv-
ing [35], [36], [37], but we only include a single repre-
sentative paper.

To ensure that our application collection process is transpar-
ent and reproducible, we have included further details on
this process in our replication package.1

2.2 Resulting collection

Finding 1: About half of the 89 serverless applications in
our dataset are used in production, and about half of them
are open source. However, only few applications are both
used in production and open source.

We collect a diverse dataset of 89 serverless applications
from open-source projects, academic literature, industrial lit-
erature, and scientific computing based on the methodology
in Section 2.1. This dataset (see Figure 1, component E) is
publicly available as part of our replication package.1 Out
of the total of 89 applications, 55% are used in production,
and 53% are open source. Researchers can use this dataset
to study different applications, which facilitates extract-
ing meaningful patterns and could trigger new designs.
The dataset can also help with identifying representative
applications, which can later be used for the evaluation
of novel approaches and in empirical studies. Engineers
can find in the dataset useful examples and identify areas
in which serverless computing is successfully applied, to
help decide whether to adopt serverless computing and to
select blueprints for similar use-cases. Platform providers
can extract knowledge on how their products are used and
thus optimize them, and gaps in adoption that can point out
deficits in current platform capabilities.

Figure 2 shows two example serverless applications from
our dataset. Figure 2(a) depicts the serverless backend of
Coca-Cola vending machines—an operation that handles
30 million requests per year. Figure 2(b) illustrates the

1. https://doi.org/10.5281/zenodo.5185054

https://doi.org/10.5281/zenodo.5185054

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

open-source application StreamAlert, by AirBnB, which al-
lows the validation of security rules on streams of log
data. Both applications use the cloud provider AWS, but
are implemented in different programming languages. The
architecture of these applications is different: whereas the
vending machine uses a single external service, a managed
cloud API gateway, StreamAlert uses several, including
managed databases, managed streaming, managed queues,
and managed storage. They use different trigger types, HTTP
requests for the vending-machine backend, cloud events
for StreamAlert. The number of serverless functions also dif-
fers: whereas the vending machine backend uses a single
serverless function, StreamAlert consists of many serverless
functions. The workload of both applications further differs
in execution pattern, burstiness, and data volume. The vending
machine backend focuses on cost savings as the motivation
behind adopting serverless, whereas StreamAlert seems to
choose serverless to avoid operational overheads.

Motivated by this comparison, we focus in the next
section on analyzing these and more characteristics for all
serverless applications in our dataset.

3 SERVERLESS APPLICATION CHARACTERISTICS

This section describes our methodology to identify and an-
alyze characteristics of serverless applications. We analyze
the dataset collected in Section 2, using six general questions
about serverless applications.

3.1 Methodology

Figure 1, points 1–4, gives an overview of our methodology
to identify the characteristics of serverless applications. Al-
though we apply the methodology described in the follow-
ing on the dataset collected in Section 2, the characterization
methodology we introduce here could be applied to other,
similar datasets. This level of generality allows further com-
parison between studies, a feature we leverage to conduct
our own cross-community study, in Section 4.

We first identify and formalize the set of investigated
characteristics through a multi-round process. In an initial
round, we start from a set of questions (headers in Sec-
tion 3.2), and each author suggests characteristics indepen-
dently, based on expertise. In the next round, we merge
similar characteristics and retain only the characteristics
that at least two authors consider relevant, in this work,
22 characteristics. Based on group discussion, we further
define for each characteristic either the range of values or an
exhaustive set of potential values, as applicable. For some
characteristics, we cannot define a set of potential values
before reviewing the applications. For these characteristics,
we use text fragments during the review. Using thematic
coding [38], [39], we extract codes and treat those as values
for these characteristics.

We then conduct an initial round of reviews (Figure 1,
label 1). Each application is assigned two reviewers out
of a pool of seven available reviewers (all are authors). We
manually adjust a few reviewer assignments to reduce the
number of coinciding reviewer pairs. Subsequently, each
reviewer individually assigns values to all characteristics of

their assigned applications. For the scientific applications, a
different approach was necessary, because many were not
publicly available at the time of our review. Therefore, these
applications are reviewed by a single domain expert, which
was either involved in the development of the application or
in direct contact with the development (Figure 1, label 2).
Our replication package contains descriptions of the sci-
entific use cases and outline which domain experts were
consulted for each application.

Each review of an application characterizes it according
to 22 characteristics: cloud platform, programming languages,
external services, trigger types, number of functions, execution
pattern, burstiness, data volume, application type, function run-
time, latency relevance, motivation, cost/performance tradeoff,
resource bounds, locality requirements, update frequency, domain,
is it a workflow?, workflow coordination, workflow structure,
workflow size, and workflow internal parallelism. For each, the
result is typically a value, one of the possible values for
that dimension. However, if the information to determine a
characteristic for a serverless application is not available, we
label the characteristic as ”Unknown” for this application.

After completing the initial round of reviews, we cal-
culate the Fleiss’ kappa to quantify the level of agreement
between the reviewers [40] (Figure 1, label 3). We exclude
all characteristics that use thematic coding and all character-
istic assignments where at least one reviewer assigned more
than one value, as the Fleiss’ kappa can not be calculated in
these cases. As each characteristic has a different number of
possible values, we calculate Fleiss’ kappa value for each
characteristic individually and then quantify the overall
agreement with a weighted average over the individual
Fleiss’ kappa value of each characteristic. This results in
a Fleiss’ kappa value of 0.48, which can be interpreted as
“moderate agreement” [41].

In the following discussion and consolidation phase (Fig-
ure 1, label 4), the reviewers compare their notes and try
to reach consensus for the characteristics with conflicting
assignments. For most conflicts, consolidation turns out to
be a quick process, as the most frequent type of conflict
was that one reviewer found additional documentation that
the other reviewer did not find. In only a few cases, the two
reviewers still have different interpretations of a characteris-
tic; these conflicts are discussed among all authors to ensure
that characteristic interpretations are consistent. Following
this process, we were able to resolve all conflicts.

Our process is data-driven, so it also has to account for
missing or malformed data. For 6 characteristics (resource
bounds, locality requirements, update frequency, domain, work-
flow internal parallelism, and cost/performance tradeoff), many
applications are assigned the “Unknown” value, i.e., the
reviewers were not able to determine the value of this char-
acteristic, as the required information was missing in the
documentation. Therefore, we exclude these characteristics
from this study.

For the remaining 16 characteristics, the percentage of
“Unknowns” ranges from 0–19%, with two outliers at 25%
and 30%. These ”Unknowns” are excluded in the percentage
values presented in this article. A breakdown per character-
istic of the “Unknown” percentages is available in our repli-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

Proportion of applications [%]
Google Cloud

IBM Cloud
Private Cloud

Azure
AWS

3%
7%
8%

10%
80%

Fig. 3: Cloud provider used for serverless applications.

Proportion of applications [%]
Ruby

Go
C#

C/C++
Java

Python
JavaScript

2%
5%

8%
11%
12%

42%
42%

Fig. 4: Programming language used for serverless applica-
tion.

cation package.1 Additionally, for a single characteristic (the
application type), the list of potential values turns out to be
inadequate, so we repeat the mapping for this characteristic
with a new set of potential values.

3.2 Resulting Characteristics
In the following, we describe the serverless application char-
acterization results in the context of six common questions
about serverless applications, in turn.

3.2.1 How are serverless applications implemented?

Finding 2: Currently, AWS is the dominating platform for
serverless applications (80%), and most applications are
implemented in either JavaScript or Python (42% each).

When AWS revealed Lambda in 2014, it was the only
FaaS platform offered by a major cloud provider, and it
only supported JavaScript functions. Since then, tens of
serverless platforms have emerged [20, §3], offering support
for diverse programming languages. The capabilities and
performance features of these platforms and languages have
been studied extensively [42]. We focus here on the state of
practice in implementing serverless applications.

We analyze the collection of serverless applications in-
troduced in Section 2. Figure 3 shows that 80% of the
applications in our dataset are using the cloud provider
AWS, whereas the other major cloud providers are used a
lot less often (10% Azure, 7% IBM Cloud, and 3% Google
Cloud). Although AWS also has the largest market share
when it comes to IaaS at 47.8% [43], this difference alone
is not enough to explain why so many of the applications
in our dataset are using AWS. A potential explanation is
that AWS Lambda was released two years before any other
large cloud provider released their Function-as-a-Service
solution, which means this platform is likely more mature
and there was more time for customers to adopt its server-
less features. Since then, many open-source Function-as-a-
Service solutions launched [20], yet we do not see significant
adoption for them in our dataset (a combined 8%, mostly by

Proportion of applications [%]
ML

Queue
Streaming
Monitoring

None
Pub/Sub

API Gateway
Database

Storage

5%
10%
11%
12%
12%

17%
18%

48%
61%

Fig. 5: Managed services used by serverless applications.

Proportion of applications [%]
Manual

Scheduled
Cloud event

HTTP request

9%
13%

41%
48%

Fig. 6: Trigger types used in serverless applications.

scientific applications). We observe that most applications
in our dataset use managed cloud services that would not
be available in a private cloud environment; this could
explain the low adoption of the open-source Function-as-
a-Service solutions and also spur innovators in serverless
technology to consider more carefully the ecosystem where
their platforms can work.

Interpreted languages could be better suited for server-
less applications than compiled languages, because com-
piled languages suffer from longer cold-starts [44]. Fig-
ure 4 corroborates this rule-of-thumb: JavaScript (42%)
and Python (42%) are the most popular programming
languages. Serverless applications are also written in
Java (12%), C/C++ (11%), or C# (8%); few use Go (5%)
or Ruby (2%). However, this may change, as the usage of
ahead-of-time compilation, e.g., for Java, has been shown to
alleviate the difference in cold-start durations [45].

3.2.2 How does a typical serverless architecture look?

Finding 3: Serverless applications typically use cloud
storage (61%), cloud databases (47%), and cloud messag-
ing (38%). They use few cloud functions: 82% of serverless
applications use 5 or fewer functions.

Developers looking to implement serverless applica-
tions need to make many architectural decisions, such as
which external services to use, how many functions to
use, and how they are triggered. Understanding patterns
in serverless architecture can guide the general discourse on
serverless applications and provide a valuable guideline for
developers starting to build serverless applications.

Figure 5, label None, shows that only 12% of the server-
less applications in our dataset do not use any managed
service. This suggests serverless applications are typically
created by combining serverless functions for compute and
managed cloud services for other operations. The most
frequently used managed services in our dataset are stor-
age (61%) and databases (48%). Serverless functions are
stateless, therefore all application state needs to be persisted

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of distinct functions

0.0
0.1
0.2
0.3
0.4

Pr
ob

ab
ilit

y
de

ns
ity

Fig. 7: Number of serverless functions per serverless appli-
cation.

Proportion of applications [%]
Scheduled

High-volume OD
On-demand (OD)

17%
39%

47%

Fig. 8: Execution pattern of serverless applications.

in external storage and databases. The second class of most
frequently used external services are managed messag-
ing services, including publish/subscribe solutions (17%),
streaming solutions (11%), and queuing solutions (10%).
Serverless functions often use such messaging services to
store their output if it needs to be processed further.

Cloud providers offer different ways to trigger the exe-
cution of serverless functions. As Figure 6 depicts, we find
that 48% of the selected applications use HTTP triggers,
and a further 41% use cloud events triggers (e.g., as a new
message in a queue, or a new entry in a database). Generally,
HTTP triggers are commonly used to expose functionality to
users, whereas cloud events help coordinate multiple cloud
functions. This is a significant change from microservices,
which typically rely on API calls to coordinate multiple ser-
vices. One of the reasons for this change towards an event-
driven architecture could be that synchronous calls between
serverless functions cause double billing [46]. A smaller
number of applications use schedule-based triggers (13%)
or manually triggered functionality (9%). These triggers are
usually used for orchestration or management tasks.

Figure 7 shows the number of functions per application
is relatively low: Only 7% of the applications in our dataset
use more than 10 functions, and 82% use 5 or fewer func-
tions. This suggests, firstly, that the use of external services
reduces the amount of (internal) code required to build an
application. Secondly, the functionality encapsulated by a
serverless function is between a microservice and an API
endpoint, as the applications we review do not wrap every
programming function as a serverless function [47]. The
term “serverless functions” might be misleading, as they
are not related to the programming concept of functions.

3.2.3 What are common traffic patterns for serverless ap-
plications?

Finding 4: Most serverless applications have potentially
bursty workloads (84%). Serverless applications are often
used for high-traffic workloads (39%).

Traffic patterns—namely, execution patterns, burstiness
characteristics, and data volumes—can reveal how server-
less platforms are used. Applications can be executed on-
demand when a user interacts with the application or a cloud

Proportion of applications [%]
Not Bursty

Bursty
16%

84%

Fig. 9: Burstiness of the workload of serverless applications.

Proportion of applications [%]
> 1 GB
< 1 GB

< 100 MB
< 10 MB

< 1 MB

16%
10%

4%
16%

53%

Fig. 10: Data volume handled by serverless applications.

event occurs; we further classify the on-demand execution
as regular on-demand or high-volume on-demand. Applications
can also be scheduled to run at specific times, e.g., to perform
cleanup tasks during off-hours.

Regarding the execution patterns, Figure 8 shows that
most applications are triggered on-demand (86%), out of
which more than half are high-volume invocations, associ-
ated with business-critical functions. Only 17% of the ap-
plications are triggered by a periodic schedule. Through an
in-depth analysis, we find that about half of the scheduled
applications execute operations & monitoring functions (see
also Section 3.2.4), highlighting how the serverless model
has been adopted—in many cases—to automate operations,
software management, and DevOps pipelines. We also note
that the high prevalence of on-demand triggered applica-
tions, and specifically, high-volume on-demand patterns, is
well supported by the industry trends of reducing over-
heads (i.e., function start-up time), and of providing quick
and seamless function auto-scaling mechanisms.

Regarding burstiness, we classify applications as having
potentially bursty workloads or non-bursty workloads. A
bursty application follows a workload pattern that includes
sudden and unexpected load spikes, or a significant amount
of sustained noise and variation in intensity. We classify an
application as non-bursty if the workload is guaranteed to
rarely or never experience bursts (e.g., if all executions are
scheduled and known in advance); otherwise, the workload
is bursty. When humans trigger function executions, the
workload pattern can be bursty, as user behavior can rarely
be scheduled or reliably controlled. As Figure 9 shows, we
classify more than 84% of the workload patterns we ana-
lyzed as bursty; only 16% have a clear non-bursty pattern.
As one of the strengths of serverless computing is its seam-
less scalability, together with the general ease of operations,
it comes as no surprise that most of the applications can
indeed experience bursty workload patterns.

Finally, we analyze the data volume or load that the
serverless apps issue on the network and storage devices.
We classify applications into: volumes of less than 1 MB
per execution, less than 10 MB, less than 100 MB, less than
1 GB, and more than 1 GB. Exact numbers rarely appear
in our sources so this classification is based on reviewers’
estimates. Figure 10 shows (i) more than half of the appli-
cations (53%) in the smallest category of data volumes and
16% in the next (< 10 MB) and (ii) the second peak (16%)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

Proportion of applications [%]
Ops & Monitoring

Batch Tasks
Stream/async

API

20%
24%

28%
29%

Fig. 11: Application type of serverless applications.

Proportion of applications [%]
Real-time

Parts of application
Complete application

Not important

2%
28%

32%
38%

Fig. 12: Latency requirements of serverless applications.

in the largest category (> 1 GB). The resulting distribution
appears bimodal, but this might be an artifact of the binning
intervals.

3.2.4 What are serverless applications used for?

Finding 5: Serverless applications are not limited to any
specific types of applications, as they are commonly used
to implement APIs (29%), stream/async processing (28%),
batch tasks (24%), and operations tasks (20%).

A common assumption is that serverless applications are
suitable for operations tasks and batch jobs, as their traffic
patterns profit from the pay-per-use model. For example,
Netflix uses AWS Lambda for operations tasks, such as
video encoding, file backup, security audits of EC2 in-
stances, and monitoring. However, the core functionality—
the website and app backend, and video delivery—is still
running on traditional IaaS cloud services [48]. Contrary
to this popular belief, and as Figure 11 depicts, we find
that the most common serverless applications in our dataset
are implementing APIs (29%) or are processing frequent
events (streams) asynchronously (28%). Example use cases
for these types of applications are serverless backends for
web, mobile, or IoT applications. Still, a significant por-
tion of serverless applications focus on processing batch
tasks (24%) and on automating operations tasks (20%).

Another common assumption is that serverless applica-
tions are not suitable for complex analysis tasks. In contrast,
in our dataset, 25% of applications contain functions with
an estimated runtime of over one minute. Among these
applications are scientific workloads, such as SNP Geno-
typing [14] or seismic imaging [13], showing an increased
adoption of serverless for complex analysis tasks.

The high percentage of APIs is somewhat surprising, as
a common argument against serverless applications is that
cold starts make them unsuitable for applications with low-
latency requirements or focus on tail-latency. However, we
find that serverless applications are used for latency-critical
tasks. As shown in Figure 12, 38% of the selected serverless
applications have no latency requirements. However, 32%
of the serverless applications have latency requirements for
all functionality, 28% have partial latency requirements, and
2% even have real-time requirements.

Proportion of applications [%]
Maintainability

Simplify Development
Performance

Scalability
NoOps

Cost

3%
13%

19%
34%
34%

47%

Fig. 13: Motivation for building serverless applications.

3.2.5 Why are practitioners choosing serverless?

Finding 6: Reduced hosting costs of serverless applica-
tions (47%), reduced operation effort (34%), and high scal-
ability (34%) are the main drivers for serverless adoption.

Several potential benefits of serverless applications have
been proposed: reduced operational effort, faster develop-
ment due to the heavy use of Backend-as-a-Service, and
near-infinite scalability of serverless applications. Many also
discuss significant cost savings from switching to serverless.
However, these benefits are not generally agreed upon, for
example, cost savings have come under scrutiny [49]. To
understand why practitioners choose to adopt serverless,
we investigate the descriptions and documentation of ap-
plications in our dataset.

We could not determine the reasons behind the adoption
of serverless for about 30% of the applications in our dataset,
as the documentation did not mention explicitly why server-
less was chosen. We analyze the remainder and depict the
results in Figure 13. The main driver is cost—mentioned
by 47% of the remainder applications. While serverless is
not per se cheaper than IaaS hosting, the pay-per-use model
and ability scale to zero reduce costs in scenarios where
the IaaS resources are underutilized. Serverless applications
can also offer seamless, virtually infinite scaling. Scalability
is mentioned as a reason for serverless adoption by 34%
of the applications in our dataset. The third main reason
for choosing serverless over traditional hosting options is
reduced operational overhead, because server management
is no longer done by applications. A few applications also
reported improved performance (19%) and faster develop-
ment speed (13%) as reasons for serverless adoption.

3.2.6 How complex are serverless applications?

Finding 7: Almost a third (31%) of the serverless ap-
plications are workflows. Most workflows are of simple
structure, small, and short-lived.

Although initially serverless focused on simple applica-
tions, comprised of mainly small functions, there has been
increasing interest in using serverless for more complex
applications. Such applications can be expressed as server-
less workflows, which orchestrate the dependencies between
multiple functions.

From our dataset, we find a significant percentage of ap-
plications already structured as serverless workflows (31%).
Examples of such serverless workflows can range from
simple workflows to large scientific workflows [13].

Similar to workflows in other fields, we can classify
these serverless workflows into specific patterns based on

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

Proportion of applications [%]
Bag of tasks

Complex Workflow
Sequential Workflow

17%
33%

50%

Fig. 14: Structure of serverless workflows.

Proportion of applications [%]
Large (>1000)

Medium (11-1000)
Small (2-10)

4%
23%

72%

Fig. 15: Size of serverless workflows.

how the function calls (or tasks) are structured within these
orchestrations. As Figure 14 depicts, we find that half of
the workflows are sequential in nature, where tasks are
executed one after the other. We also find bags of tasks (17%),
where a set of tasks can execute without a particular order or
inter-dependency. Finally, a third (33%) of the applications
are defined as complex workflows, that is, workflows that
include structures such as conditional branches and loops.
The diversity and level of complexity indicate designers of
workflow management systems are soon to be engaged in a
competition over new features and optimizations.

Another key differentiator between the selected applica-
tions is workflow size (shown in Figure 15). Most applica-
tions (72%) have rather small workflows, consisting of 2 to
10 tasks. These tend to be applications for business processes
and data pipelines, such as the multi-step provisioning of
developer machines at Autodesk [50]. Almost a quarter of
serverless workflows (23%) contain 11 up to 1,000 tasks. Fi-
nally, a few serverless workflows (4%) consist of more than
1,000 tasks—typically, large scientific workflows requiring
custom workflow engines to run.

A final factor in serverless workflows is the approach
used to orchestrate their execution. Overall, as Figure 16
highlights, we found that most serverless workflow ap-
plications (60%) use event-based mechanisms—such as file
uploads triggering the execution of functions—to implicitly
orchestrate entire workflows by ensuring that the result of
one function triggers the next. About a third of the work-
flows (38%) are managed by a dedicated workflow management
system, such as AWS Step Functions, Google Workflows, or
Azure Durable Functions. Besides these cloud-based orches-
tration methods, we also identify a less-common approach,
local coordination (2%), in which the orchestration complexity
is deferred to the client-side. Although this is less robust
than other methods, it is used for one-off workflows, e.g.,
the distributed build-workflows of gg [51].

4 FINDING COMMUNITY CONSENSUS

Because the field of serverless applications is relatively new
and fast-evolving, reaching community consensus about
application patterns and best practices is both desirable
and challenging. This section aims to analyze if existing
studies that analyze one or several characteristics that we
also study, and determine if overlapping studies corroborate
our findings or contradict them. The results are a necessary
first step towards reaching community consensus.

Proportion of applications [%]
Local coordinator
Workflow engine

Event

2%
38%

60%

Fig. 16: Coordination of serverless workflows.

4.1 Methodology

We aim to find and compare with existing studies in the
community on the characteristics of serverless applications.
Our methodology consists of three parts: a literature search
to identify related studies, mapping their findings to our
framework, and quantifying the degree of agreement.

4.1.1 Identification of Related Study

To identify existing surveys and datasets that also investi-
gate at least one of the characteristics investigated in this
work, we conducted a literature search. As we are mostly
looking for industrial studies and datasets, we use Google
as the search engine with the following search term2:

(“serverless” OR “faas”) AND

(“dataset” OR “survey” OR “report”)

after: 2018-01-01

This search term looks for any combination of either
serverless or FaaS alongside any of the terms: dataset,
survey, or report. We further limit the search to articles since
2018, as serverless is a fast-moving field, and therefore any
older studies are likely outdated. This search term results in
a total of 173 unfiltered results.

To validate if using only a single search engine is suffi-
cient, and the search term is broad enough, we check if the
7 studies that the authors were already familiar with appear
in the results. Because the search results include all these
studies, we conclude our literature search is broad enough.

We identified relevant results as follows. In the first iter-
ation, to keep primary sources, we filter out results that do
not report original data. We remove all reports on secondary
data, where the original study was already contained in the
search results. This process results in a total of 16 primary
studies. Finally, we determine for each primary study if they
investigate one of our characteristics. This resulted in a total
of 10 related studies, which Table 1 summarizes. The related
studies include 7 surveys and 3 datasets, survey from 19 to
2 400 participants, and report between 2018 and 2020.

In the following, we give a short description of each
related study, as the methodology and context of each study
are important for the correct interpretation of their results.

Serverless Community Study (SCS): This is an online survey
among 583 participants from the serverless community,
conducted in April 2020. It mostly focuses on end-user con-
cerns, such as how far the end-user is in adopting serverless
and what challenges they experience.

2. https://www.google.com/search?q=%28%22serverless%22+OR+
%22faas%22%29+AND+%28%22dataset%22+OR+%22survey%22+
OR+%22report%22%29+after%3A2018-01-01

https://www.google.com/search?q=%28%22serverless%22+OR+%22faas%22%29+AND+%28%22dataset%22+OR+%22survey%22+OR+%22report%22%29+after%3A2018-01-01
https://www.google.com/search?q=%28%22serverless%22+OR+%22faas%22%29+AND+%28%22dataset%22+OR+%22survey%22+OR+%22report%22%29+after%3A2018-01-01
https://www.google.com/search?q=%28%22serverless%22+OR+%22faas%22%29+AND+%28%22dataset%22+OR+%22survey%22+OR+%22report%22%29+after%3A2018-01-01

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

TABLE 1: Overview of the related studies.

Study Year Type Participants Source

SitW 2020 Dataset - https://bit.ly/3bl2vHM
TSoS 2020 Dataset - https://bit.ly/2Zp9zOh
FtLoS 2020 Dataset - https://bit.ly/3diWZrY
SCS 2020 Survey 583 https://bit.ly/37p56j4
FSS 2020 Survey ˜150 https://bit.ly/2ZsIVUM
OSS 2019 Survey >1500 https://bit.ly/3dnViJH
MMS 2018 Survey 182 https://bit.ly/3dpcJd6
DSS 2018 Survey 19 https://bit.ly/3qybX15
CNCF 2018 Survey 2400 https://bit.ly/2M2sjQz
GtST 2018 Survey 608 https://bit.ly/3biElxO

Serverless in the Wild (SitW): In 2020, researchers at Microsoft
published one of the first comprehensive characterization
studies of the workloads of a major (and closed-source)
serverless platform. For this, they release all function in-
vocations on the Azure Functions platform for two weeks.

Mixed-Method Study (MMS): The academic mixed-method
study combines semi-structured practitioner interviews
with 12 experts, a systematic review of 50 grey literature
articles, and a quantitative survey covering 182 responses to
investigate FaaS software development in industrial prac-
tice. Our study only compares against their web survey
results from early 2018.

The State of Serverless (TSoS): This study compiles usage-data
from the customer base of Datadog, a vendor of serverless
monitoring solutions. This data was published in early 2020
and focuses solely on AWS Lambda.

O’Reilly Serverless Survey (OSS): In June 2019, O’Reilly
surveyed over 1,500 participants from diverse locations,
companies, and industries on the adoption of serverless
computing.

Guide to Serverless Technologies (GtST): As part of the ebook,
”Guide to Serverless Technologies”, The New Stack sur-
veyed 608 participants interested in serverless technology.
The survey participants were primarily recruited through
the company’s newsletter and their social media reach-out.

For the Love of Serverless (FtLoS): New Relic, a vendor for
a serverless monitoring solution, analyzed serverless trends
in 2020, based on data covering a sample set of the trillions
of serverless events that their product processes.

Fastly Serverless Survey (FSS): Soon after the launch of the
beta version of Compute@Edge, Fastly conducted in the beta
community a survey about trends and challenges.

Dashbird Serverless Survey (DSS): In 2018, Dashbird surveyed
its customers on why they switched to serverless, what
problems they were trying to solve, and the biggest ben-
efits and drawbacks. The 19 companies in the survey use
Dashbird’s observability solution on AWS workloads.

CNCF Survey (CNCF): The Cloud Native Computing Foun-
dation regularly surveys its community about the adoption
of cloud-native technologies. The 2018 survey includes some
questions on serverless adoption and platforms.

4.1.2 Mapping the Results to our Framework
Because the related studies (identified in Section 4.1.1) of-
fer different answer-options than our study, we map their

options to ours. In many cases, this is straightforward, e.g.,
when mapping “HTTP” to “HTTP Request”.

When the granularities of offered options differ between
studies, we aggregate lower-granularity options to match
the higher-granularity. In case the lower-granularity options
include multiple answers, we select only the highest value
instead of aggregating values, to avoid counting a single
study participant multiple times. We provide a detailed
account of the mapping for each characteristic and related
study as part of our replication package.1

4.1.3 Quantifying the Degree of Agreement
For many studies, some information required for traditional
meta-analysis techniques [52], such as cohort size, is un-
available. This prevents the direct application of these meta-
analysis techniques.

We propose an agreement metric, a total that equally
weighs the agreement of the reported ranking and the
agreement of the reported percentage values:

At = 0.5×Ap + 0.5×Ar

where At represents the total agreement, Ap the agreement
of the reported percentage values, and Ar the agreement
of the reported ranking, with Ap and Ar defined in the
following.

We calculate the percentage agreement as the weighted
mean absolute percentage error (MAPE), with the reported
percentage value of each answer as the weight:

Ap =

N∑
i=1

Min(1, ui)×
|ui − ti|

ui

where N denotes the number of answer-options; and ui/ti
are the percentage value reported for option i in our study
and the related study, respectively. The formula caps the
MAPE for each option at 100%, as otherwise options with
very low percentage values would dominate the MAPE [53].
In some cases, one of the studies allows a participant to
select multiple options, while the other study only allows
for a single option. To compare these results, we calculate
a scaling factor based on the percentage difference of the
largest reported values by both studies and scale the results
from the study with multiple answers per participant ac-
cordingly.

We calculate the agreement regarding the reported rank-
ing as following:

Ar =
S(u, t) + 1

2

We use Spearman’s rank correlation coefficient S(u, t), a
common metric to quantify the similarity of two rank-
ings [54]. As the Spearman’s r value ranges from [-1, 1],
we scale it to [0,1] so it has the same scale as Ap. Therefore,
the resulting At also lies in the range [0, 1].

Finally, we categorize scores in the range [0.8, 1] as
very high agreement, [0.6, 0.8) as high agreement, [0.4, 0.6) as
medium agreement, [0.2, 0.4) as low agreement, and [0, 0.2) as
very low agreement. We acknowledge that these categories are
somewhat arbitrary. However, based on a manual inspection
of the results, they seem to capture the individual studies’

https://bit.ly/3bl2vHM
https://bit.ly/2Zp9zOh
https://bit.ly/3diWZrY
https://bit.ly/37p56j4
https://bit.ly/2ZsIVUM
https://bit.ly/3dnViJH
https://bit.ly/3dpcJd6
https://bit.ly/3qybX15
https://bit.ly/2M2sjQz
https://bit.ly/3biElxO

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

TABLE 2: Degree of agreement with existing studies. A - denotes that the study did not investigate this characteristic and
a (-) denotes that the results are incomparable due to differences in the question or answer options.

Characteristic SCS SitW MMS TSoS OSS GtST FtLoS FSS DSS CNCF

Platform Very High - (-) - Very High High - - High -
Language Medium - High Very High - Medium Very High - - -
External Services (-) (-) (-) (-) - - - - - -
Trigger Types - Very High - - - - - - - -
Number of Functions (-) Very High High - - Low - - - -
Execution Pattern - (-) - - - - - - - -
Burstiness - High - - - - - - - -
Data Volume - - - - - - - - - -
Application Type Very High - (-) - - High - (-) - (-)
Function Runtime - High - High - - (-) - - -
Is Latency relevant? - - - - - - - - - -
Motivation Medium - Medium - High High - Low - Low
Is it a workflow - - - - - - - - - -
Workflow coordination - - - - - - - - - -
Workflow structure - - - - - - - - - -
Workflow size - - - - - - - - - -

level of agreement quite well. Our replication package1

includes the mapped data alongside the resulting scores, to
enable readers to conduct manual inspections of the degree
of agreement.

4.2 Results of Consensus Analysis
We analyze here the degree of agreement between the
results from our study and from other studies. This meta-
analysis can identify meaningful corroboration between the
different studies: For the characteristics that appear both in
our study and in others, a high degree of agreement with
the existing studies would increase the credibility of these
results. A high degree of agreement can also suggest that the
results for characteristics that have not yet been investigated
by any other study are also credible.

Table 2 summarizes the results; degrees of agreement
are defined in Section 4.1.3. We find that 8 characteristics
are also investigated by other studies, as indicated by rows
where very low to very high items appear. Among these
characteristics, platform, language, and motivation are ana-
lyzed by 4–6 other studies. For 6 characteristics, we are the
first to investigate them in peer-reviewed material. For the
remaining 2 characteristics, external services and execution
pattern, our study uses options incomparable with other
studies that considered the aspect.

In general, we find a high degree of agreement with the
existing studies. For each characteristic where we observe
only low or medium level of agreement with another study,
we also observe high or very high agreement with another
study, pointing towards differences between these studies.
Only for the motivation characteristic, there are multiple
studies relatively to which we observe low and medium
level of agreement, suggesting there might be some infor-
mation that our study missed.

In the following, we provide a qualitative comparison
of the results from our study and the comparison studies
for the eight characteristics analyzed by one or more of the
comparison studies. Here, we focus on points of agreement

0.0 0.2 0.4 0.6 0.8 1.0
Relative share of applications/respondents

SCS
OSS

GtST
CNCF

Us

AWS Azure Private IBM Google

Fig. 17: Comparison of results for used cloud provider.

and disagreement between the studies to obtain corrobo-
rating evidence for our findings and identify characteristics
that require further investigation.

4.2.1 Platform and Programming Language

Consensus 1: AWS is the most popular serverless
provider with an over 50% market share, followed by
Microsoft Azure and Google Cloud. (See Finding 2.)

Consensus 2: JavaScript and Python are the most popular
programming languages. Different studies find next a mix
of Java, C#, and C/C++. (See Finding 2.)

Five independent studies indicate that AWS is the most
popular serverless provider, followed by Microsoft Azure
and Google Cloud. All five studies report a relative share
of applications per respondent above 50% for AWS, as
shown in Figure 17. Azure comes second in all studies
except CNCF, where Google Cloud is slightly more popular.
Google Cloud is ranked third in all studies except ours,
which reports IBM Cloud to be more popular. IBM Cloud
is the last major public serverless provider mentioned by all
studies. CNCF, GtST, and SCS mention many other server-
less platforms such as Cloudflare Workers, Twilio Func-
tions, or Huawei FunctionStage. However, we excluded
these hosted platforms due to low popularity (<5%) and
only being mentioned by few studies. SCS and our study

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

0.0 0.2 0.4 0.6 0.8 1.0
Relative share of applications/respondents

SCS
TSoS
GtST

FtLoS
MMS

Us

JavaScript
C# / .NET

Python
Go

Java
Ruby

C/C++

Fig. 18: Comparison of results for used programming lan-
guage.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of distinct functions

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y
de

ns
ity Us

GtST
MMS
SitW

Fig. 19: Comparison of function numbers per application.
The long tail of the distributions is not show (GtST: 10.3%
> 25 functions, MMS: 16% > 20 functions, SitW: 0.25% > 20
functions, Us: 1.1% > 20).

grouped installable platforms into the private cloud cate-
gory, including Apache OpenWhisk, Knative, Kubeless, and
OpenFaas. For the other studies, the private cloud category
could not be calculated due to incompatible reporting.

Figure 18 shows six studies agreeing that JavaScript
and Python are the dominant programming languages in
serverless applications, followed by Java and C#. The tie
between JavaScript and Python in our study highlights that
both languages are similarly popular across all six studies,
with a minor trend towards JavaScript being more popular.
Compared to broadly distributed surveys, Java appears to
be more popular among enterprise newsletter respondents
from GtST and the enterprise-focused survey and interview
study MMS. The .NET platform with C# is also present in
all six studies but generally less popular than Java. Four
studies report Go as a strong contender for catching up
with C#. Ruby remains a niche language listed by only
three studies. In contrast to other studies, our study found
C/C++ to be similarly popular to Java and C#. We assume
that other studies mostly ignored this category because it
refers to C/C++ binaries running under another officially
supported runtime (e.g., using shims to invoke C++ binaries
from JavaScript code). For GtST and TSoS, the share of
programming languages is derived from telemetry data of
deployed functions (rather than applications) based on their
runtime configuration for the cloud provider AWS.

4.2.2 Number of Functions

Consensus 3: Nearly two-thirds of serverless applications
have 10 or fewer functions. (See Finding 3.)

TABLE 3: Comparison of results for trigger types.

Study HTTP Event Scheduled Manual Orchestration

SitW 0.641 0.363 0.292 - 0.094
Us 0.474 0.402 0.124 0.093 -

The number of functions per serverless application was
also investigated by GtST, MMS, and SitW. Figure 19 shows
a histogram of the number of functions determined by each
study. The coarse binning used by the surveys prevents a
detailed analysis, but a clear trend is visible. Both GtST
and MMS find more functions than we do; the difference
is larger for MMS. We hypothesize that this is due to dif-
ferences in survey methodologies. SitW finds more single-
function applications than all other studies. As SitW is spe-
cific to Azure, while the other studies predominantly cover
AWS, we hypothesize that serverless applications on AWS
are larger than on other platforms due to the higher maturity
of the AWS serverless ecosystem. Despite disagreements on
the exact distribution, all studies agree that at least 64% of
serverless applications have ten or fewer functions.

4.2.3 Trigger Types

Consensus 4: HTTP requests and cloud events are the
most common triggers for serverless functions. (See Sec-
tion 3.2.2.)

The only other study on how serverless functions are
triggered is SitW. Table 3 shows the results for the triggers
HTTP request, cloud event, and scheduled triggers. For
SitW, we aggregated the results for queue, storage, and
event trigger as cloud events, as our definition of cloud
event included those. Both studies agree that HTTP requests
and cloud events are the most common triggers for server-
less functions. However, SitW finds that scheduled triggers
are similarly common, whereas we find them less common
than HTTP and event triggers. SitW covers only functions
deployed on Azure and reports a larger share of single-
function apps than any other study. We hypothesize there is
a difference in serverless usage between the providers, with
serverless being used more for timer-based, single-function
utility applications at Azure than at, e.g., AWS.

4.2.4 Burstiness
Consensus 5: More than 50% of serverless applications
have potentially bursty workloads. (See Finding 4.)

The only other study that included information related
to burstiness is the SitW study. We note that there is no
standardized way of characterizing burstiness [55], [56].
The SitW study reports the coefficient of variation (cv) of
the inter-arrival times of application invocations, which we
used to derive burstiness levels B in terms of the cv fol-
lowing the metric proposed by Goh and Barabasi [55]. The
SitW results are in high agreement with the results in our
study: both studies agree that more than half of the server-
less applications exhibit bursty workloads. Specifically, we
found 81% of the applications exhibit bursty workloads,
while 57% of the applications from the SitW study exhibited
bursty behavior.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

0.0 0.2 0.4 0.6 0.8 1.0
Relative share of applications/respondents

SCS
GtST

Us

Operations Batch jobs Stream/async API

Fig. 20: Comparison of results for application type.

TABLE 4: Comparison of results for function runtime.

Study Function Runtime
<1 min >= 1 min

SitW 0.960 0.040
TSoS 0.965 0.035
Us 0.750 0.250

4.2.5 Application Type

Consensus 6: There is no dominant application type, but
several types are common. (See Finding 5.)

Comparing the different application type studies is not
straightforward, as each study introduces its own classifica-
tion type. We, therefore, had to map the categorizations of
the other studies to match our taxonomy. The details can be
found in our replication package. Figure 20 shows that GtST
and SCS agree with the observation that serverless tasks
are used for all areas of computing, including operations,
batch jobs, streaming or asynchronous data, or standard API
operations. Although the individual percentages differ, e.g.,
GtST and SCS both assign higher importance to API ap-
plications and less to stream operations, the overall picture
is quite similar. In fact, all studies agree that at least 20%
of serverless applications implement operations tasks, batch
jobs, async processing, and APIs each.

4.2.6 Function runtime

Consensus 7: At least 75% of the serverless functions run
for under 1 minute. (See Section 3.2.4.)

The runtime of serverless functions was not covered in
any of the surveys, only the datasets from Azure (SitW),
Datadog (TSoS), and New Relic (FtLoS) cover this informa-
tion. Due to our study methodology, we only estimated if
the runtime of any function of an application is less than
a minute or if it is likely to run longer. Thus, we can not
compare our results to the data from FtLoS, as they focus
on the runtime distribution below five seconds. As Table 4
shows, the studies agree that most functions run for less
than a minute, but SitW and TSoS find that over 95% of
serverless functions run for less than a minute, compared
to the 75% we found. The main reason for this difference
should be that SitW and TSoS analyze per function runtime,
whereas we analyze how many applications contain one or
more functions that run longer than a minute, so the results
are not directly comparable. We note that even though TSoS
focuses on AWS and SitW on Azure, both agree that over
95% of serverless functions run for less than a minute.

0.0 0.2 0.4 0.6 0.8 1.0
Relative share of applications/respondents

SCS
MMS
OSS

GtST
Us

Cost Scalability Perf. DevSpeed NoOps

Fig. 21: Comparison of motivation for building serverless
applications.

4.2.7 Motivation
Consensus 8: Cost, scalability, and NoOps are major
drivers of serverless adoption. Some studies also find in-
creased development speed as a major driver of serverless
adoption. (See Finding 6.)

Figure 21 compares the motivations for building server-
less applications. The studies had a wide range of possible
and overlapping options; we grouped the answers of the
comparison studies to fit the options that we identified
in our study. This means we compared the studies based
on motivations for cost reduction, scalability, performance,
developer productivity (DevSpeed), and reduced opera-
tional complexity (NoOps). We find that cost reduction and
scalability are common and key motivations mentioned in
all studies. A reason for this could be that cost reduction
and scalability are typical concerns for serverless devel-
opers and operators. In contrast, the other motivations—
performance, developer productivity, and reduced opera-
tional complexity—vary in relative share or are even com-
pletely absent in some studies. We believe this is due to the
surveys providing options for participants to select from;
those options tend to be biased by what the survey is
focused on. One survey (GtST) focused heavily on motiva-
tions related to the developer productivity, whereas another
(MMS) targeted the operation of serverless applications.

5 THREATS TO VALIDITY

We discuss potential threats to validity and mitigation
strategies for internal validity, construct validity, and exter-
nal validity.

5.1 Internal Validity

Manual data extraction can lead to inaccurate or incomplete
data. To mitigate this threat, we established and discussed a
review protocol before reviewing, continuously discussed
upcoming questions during the review process, and per-
formed redundant reviews through multiple reviewers. Our
review protocol established an exhaustive list of potential
values for each characteristic and configured automated
validation, which immediately highlighted deviations from
these values. For characteristics with thematic coding, we
continuously refined their values in regular meetings during
the review process. To address potential individual bias, we
performed two independent reviews for each application,
quantified the inter-rater agreement after an initial review

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

round through Fleiss’ kappa, and resolved each disagree-
ment in an extended discussion and consolidation phase.

The goal of this study is to capture and analyze the
current state of serverless applications. However, due to
our methodology, the collected sources can be several years
old and therefore possibly represent already overhauled sys-
tems and architectures. As we published all the underlying
data, follow-up studies can also focus on the development
of different characteristics over time.

5.2 Construct Validity
To align this study’s goal (i.e., comprehensive understand-
ing of existing serverless applications) with the data ex-
traction, we compiled a list of 22 characteristics covering
6 different aspect groups. We conducted and discussed this
selection process in an international working group with au-
thors from 5 different institutions. This kind of effort ensures
that the construct has broad validity, but not necessarily that
is valid for the entire community: other researchers might
consider different characteristics as relevant.

For the purpose of this study, we excluded Container-as-
a-Service, such as applications using AWS Fargate or Google
Cloud Run, which also fall under a broader definition of
serverless [57]. While analyzing these types of applications
could also yield interesting findings, we consider it outside
the scope of this work.

Serverless is an emerging technology, therefore it is
possible and likely that the characteristics of serverless
applications change within the next five years. However,
the goal of this study is to provide a snapshot of the char-
acteristics of serverless applications at the time of writing.
We include a detailed replication package that enables the
faithful replication of this study at a later time, which will
allow to draw conclusions about how the state of serverless
applications changed.

We analyzed consensus between our study and 10 re-
lated studies, and found many points of consensus and
good (often high or very high) levels of agreement overall.
However, to determine the level of agreement with existing
studies, we could not use existing, established meta-analysis
techniques, as some related studies did not disclose essential
information (e.g., cohort size). Therefore, it is possible that
the level of agreement we compute does not correctly reflect
the actual degree of agreement between the studies. To
account for this, we included a detailed breakdown of the
study results and their comparison as part of our replication
package1, enabling the community to conduct other com-
parisons, independently.

5.3 External Validity
Our study was designed to cover applications from open
source projects, academic literature, and industrial litera-
ture, but we cannot claim generalizability to all server-
less applications. For open-source projects, we filtered non-
trivial projects from the most popular open-source repos-
itory but might have missed projects published in other
repositories.

Our academic literature collection is based on a curated
dataset on serverless literature and complemented with

articles known to the authors. Our comparison study uses
a similar methodology. Although we validated the resulting
collections against our knowledge and a small set of test-
articles, the methodology does not guarantee validity: we
might have missed more recent articles, or articles not found
by our process and unknown to all authors.

Applications from industrial literature mostly focus on
provider-reported case studies, an existing collection of
industrial applications, and sources known to the authors.
Our scientific computing applications are limited to insti-
tutions in a single country, Germany. We only partially
cover applications in industry and science, as many of them
remain unpublished, and others provide insufficient details
to conduct a meaningful review. Other studies, e.g., on FaaS
platforms [20], suffer from the same limitations.

6 CONCLUSION

The impact of serverless applications on the society is
already large. Addressing a problem that could hamper
further adoption, the goal of this study is to understand
the state of serverless applications.

Building on open-access lists created by the community,
we collect systematically 89 serverless applications from
open-source projects, academic literature, industrial litera-
ture, and from scientific computing domain. Ours is the
largest collection to date, by almost an order of magnitude
over the next-largest. We analyze this collection alongside
16 characteristics in 6 groups: (I) implementation, (II) ar-
chitecture, (III) traffic patterns, (IV) operational complexity,
(V) usage scenarios, and (VI) motivation for adoption. Last,
but not least, we corroborate our findings with 10 existing,
mostly industrial, studies and data sets, and we investigate
points of both agreement and disagreement.

Our analysis spotlights 7 main findings, such as: (I) The
most commonly reported reasons for the adoption of server-
less include cost-savings for irregular or bursty workloads,
avoidance of operational concerns, built-in scalability, and
increased speed of development, (II) Typical scenarios in-
clude short-running tasks with low data volume and bursty
workloads, but we also frequently found latency-critical,
high-volume core functionality as serverless applications,
and (III) Serverless applications are mostly implemented on
AWS, in either Python or JavaScript, and use BaaS.

We further investigate whether our study contributes
to the combined knowledge of the community. We identify
through a systematic process a set of 10 other seminal
studies, whose focus is overlapping with ours. We analyze
each of these studies and compare their findings with ours,
identifying in the process the overall level of agreement,
main points of consensus, and also some disagreements.

We see this study as a step towards community-wide
sharing of and discussion around serverless applications.
As future directions, this collection of serverless application
could help with the development of serverless applications
by showing best practices (and whether there is consensus
around them), with the identification of serverless design-
patterns, and with tuning and performance benchmarking
based on realistic characteristics.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

7 ACKNOWLEDGEMENTS

This work was partially supported by the NWO projects
Vidi MagnaData and TOP2 OffSense and the Wallenberg
AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation.

REFERENCES

[1] IDC, “FutureScape: Worldwide IT Industry 2019 Predictions,”
https://www.idc.com/getdoc.jsp?containerId=US44403818, 2018.

[2] Research and Markets, “$7.72 Billion Function-as-a-Service Market
- Global Forecast to 2021,” https://bwnews.pr/2VBDBgC, 2017.

[3] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Serverless Com-
putation with OpenLambda,” in Proceedings of the 8th USENIX
Conference on Hot Topics in Cloud Computing, 2016, p. 33–39.

[4] E. van Eyk, L. Toader, S. Talluri, L. Versluis, A. Uta, and A. Iosup,
“Serverless is More: From PaaS to Present Cloud Computing,”
IEEE Internet Comput., vol. 22, no. 5, pp. 8–17, 2018.

[5] E. Jonas, J. Schleier-Smith, V. Sreekanti, C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. J. Yadwadkar, J. E.
Gonzalez, R. A. Popa, I. Stoica, and D. A. Patterson, “Cloud
Programming Simplified: A Berkeley View on Serverless Comput-
ing,” CoRR, vol. abs/1902.03383, 2019.

[6] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The Rise
of Serverless Computing,” CACM, vol. 62, no. 12, p. 44–54, 2019.

[7] E. V. Eyk, A. Iosup, S. Seif, and M. Thömmes, “The SPEC cloud
group’s research vision on FaaS and serverless architectures,” in
2nd International Workshop on Serverless Computing, 2017, pp. 1–4.

[8] E. Van Eyk, A. Iosup, C. L. Abad, J. Grohmann, and S. Eismann, “A
SPEC RG Cloud Group’s Vision on the Performance Challenges of
FaaS Cloud Architectures,” in Companion of the 2018 International
Conference on Performance Engineering, 2018, pp. 21–24.

[9] J. M. Hellerstein, J. M. Faleiro, J. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu, “Serverless Computing:
One Step Forward, Two Steps Back,” in 9th Biennial Conference on
Innovative Data Systems Research, 2019.

[10] G. Adzic and R. Chatley, “Serverless computing: economic and
architectural impact,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, 2017, pp. 884–889.

[11] E. Levinson, “Serverless Community Survey 2020,” 2020. [Online].
Available: https://bit.ly/SerComSurvey

[12] A. Eivy, “Be Wary of the Economics of” Serverless” Cloud Com-
puting,” IEEE Cloud Computing, vol. 4, no. 2, pp. 6–12, 2017.

[13] P. A. Witte, M. Louboutin, C. Jones, and F. J. Herrmann, “Serverless
seismic imaging in the cloud,” CoRR, vol. abs/1911.12447, 2019.

[14] R. Crespo-Cepeda, G. Agapito, J. L. Vazquez-Poletti, and M. Can-
nataro, “Challenges and Opportunities of Amazon Serverless
Lambda Services in Bioinformatics,” in Proceedings of the 10th ACM
International Conference on Bioinformatics, Computational Biology and
Health Informatics, 2019, p. 663–668.

[15] M. Chan, “Containers vs. Serverless: Which Should You Use, and
When?” https://bit.ly/3rwMqpx, Aug 2018.

[16] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, “Cloud Container
Technologies: A State-of-the-Art Review,” IEEE Trans. Cloud Com-
put., vol. 7, no. 3, pp. 677–692, 2019.

[17] P. Maenhaut, B. Volckaert, V. Ongenae, and F. D. Turck, “Resource
Management in a Containerized Cloud: Status and Challenges,”
J. Netw. Syst. Manag., vol. 28, no. 2, pp. 197–246, 2020. [Online].
Available: https://doi.org/10.1007/s10922-019-09504-0

[18] A. Orfin, “How Droplr Scales to Millions With The Serverless
Framework,” https://bit.ly/3ejIWTu, 2018.

[19] V. Yussupov, U. Breitenbücher, F. Leymann, and M. Wurster, “A
Systematic Mapping Study on Engineering Function-as-a-Service
Platforms and Tools,” in Proceedings of the 12th IEEE/ACM Interna-
tional Conference on Utility and Cloud Computing, 2019, pp. 229–240.

[20] E. van Eyk, A. Iosup, J. Grohmann, S. Eismann, A. Bauer, L. Ver-
sluis, L. Toader, N. Schmitt, N. Herbst, and C. L. Abad, “The
SPEC-RG Reference Architecture for FaaS: From Microservices
and Containers to Serverless Platforms,” IEEE Internet Comput.,
vol. 23, no. 6, pp. 7–18, 2019.

[21] T. Back and V. Andrikopoulos, “Using a Microbenchmark to
Compare Function as a Service Solutions,” in Service-Oriented and
Cloud Computing, 2018, pp. 146–160.

[22] K. Figiela, A. Gajek, A. Zima, B. Obrok, and M. Malawski, “Perfor-
mance evaluation of heterogeneous cloud functions,” Concurrency
and Computation: Practice and Experience, vol. 30, no. 23, 2018.

[23] H. Lee, K. Satyam, and G. Fox, “Evaluation of production server-
less computing environments,” in 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD), 2018, pp. 442–450.

[24] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara,
“Serverless computing: An investigation of factors influencing
microservice performance,” in 2018 IEEE International Conference
on Cloud Engineering (IC2E), 2018, pp. 159–169.

[25] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking
behind the curtains of serverless platforms,” in 2018 USENIX
Annual Technical Conference (USENIX ATC 18), 2018, pp. 133–146.

[26] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini,
“Serverless in the Wild: Characterizing and Optimizing the Server-
less Workload at a Large Cloud Provider,” 2020.

[27] P. Leitner, E. Wittern, J. Spillner, and W. Hummer, “A mixed-
method empirical study of Function-as-a-Service software devel-
opment in industrial practice,” Journal of Systems and Software, vol.
149, pp. 340–359, 2019.

[28] D. Taibi, N. El Ioini, C. Pahl, and J. R. S. Niederkofler, “Serverless
Cloud Computing (Function-as-a-Service) Patterns: A Multivocal
Literature Review,” in Proceedings of the 10th International Confer-
ence on Cloud Computing and Services Science (CLOSER’20), 2020.

[29] I. Pavlov, S. Ali, and T. Mahmud, “Serverless Development Trends
in Open Source: a Mixed-Research Study,” Thesis, 11 2019.

[30] J. Spillner and M. Al-Ameen, “Serverless Literature Dataset,”
https://doi.org/10.5281/zenodo.1175423, 2019.

[31] S. Eismann, S. Joel, E. van Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. Abad, and A. Iosup, “Serverless Applications:Why,
When, and How?” IEEE Software, vol. 38, no. 1, p. 32–39, 2021.

[32] S. Eismann, J. Scheuner, E. van Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. L. Abad, and A. Iosup, “SPEC RG Technical Report:
A Review of Serverless Use Cases and their Characteristics -
Dataset,” May 2020.

[33] J. Walter, “Systematic Data Transformation to Enable Web Cov-
erage Services (WCS) and ArcGIS Image Services within ESDIS
Cumulus Cloud,” 2019. [Online]. Available: https://earthdata.
nasa.gov/esds/competitive-programs/access/arcgis-cloud

[34] J. Blomer, G. Ganis, S. Mosciatti, and R. Popescu, “Towards a
serverless CernVM-FS,” in EPJ Web of Conferences, vol. 214. EDP
Sciences, 2019, p. 09007.

[35] V. Ishakian, V. Muthusamy, and A. Slominski, “Serving deep learn-
ing models in a serverless platform,” in 2018 IEEE International
Conference on Cloud Engineering (IC2E), 2018, pp. 257–262.

[36] A. Bhattacharjee, A. D. Chhokra, Z. Kang, H. Sun, A. Gokhale, and
G. Karsai, “Barista: Efficient and scalable serverless serving system
for deep learning prediction services,” in 2019 IEEE International
Conference on Cloud Engineering (IC2E). IEEE, 2019, pp. 23–33.

[37] Z. Tu, M. Li, and J. Lin, “Pay-per-request deployment of neu-
ral network models using serverless architectures,” in NAACL:
Demonstrations, 2018, pp. 6–10.

[38] A. Coffey and P. Atkinson, Making sense of qualitative data: comple-
mentary research strategies. Sage Publications, Inc, 1996.

[39] G. Guest, K. M. MacQueen, and E. E. Namey, Applied thematic
analysis. Sage Publications, 2011.

[40] K. L. Gwet, Handbook of inter-rater reliability: The definitive guide to
measuring the extent of agreement among raters. LLC, 2014.

[41] J. R. Landis and G. G. Koch, “The measurement of observer
agreement for categorical data,” biometrics, pp. 159–174, 1977.

[42] J. Scheuner and P. Leitner, “Function-as-a-Service Performance
Evaluation: A Multivocal Literature Review,” Journal of Systems
and Software (JSS), 2020.

[43] Gartner, “Worldwide IaaS Public Cloud Services Market Grew
31.3%,” 2018. [Online]. Available: https://bwnews.pr/2ZcI7o4

[44] N. Malishev, “AWS Lambda Cold Start Language Comparisons,
2019 edition,” https://bit.ly/ColdStartComp, 2019.

[45] S. Moellering and S. Grunwald, “Field Notes: Optimize your Java
application for AWS Lambda with Quarkus,” https://amzn.to/
3mqZYBg, 2020.

[46] I. Baldini, P. Cheng, S. J. Fink, N. Mitchell, V. Muthusamy,
R. Rabbah, P. Suter, and O. Tardieu, “The Serverless Trilemma:
Function Composition for Serverless Computing,” in 2017 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, 2017, p. 89–103.

https://www.idc.com/getdoc.jsp?containerId=US44403818
https://bwnews.pr/2VBDBgC
https://bit.ly/SerComSurvey
https://bit.ly/3rwMqpx
https://doi.org/10.1007/s10922-019-09504-0
https://bit.ly/3ejIWTu
https://doi.org/10.5281/zenodo.1175423
https://earthdata.nasa.gov/esds/competitive-programs/access/arcgis-cloud
https://earthdata.nasa.gov/esds/competitive-programs/access/arcgis-cloud
https://bwnews.pr/2ZcI7o4
https://bit.ly/ColdStartComp
https://amzn.to/3mqZYBg
https://amzn.to/3mqZYBg

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

[47] J. Spillner, C. Mateos, and D. A. Monge, “FaaSter, Better, Cheaper:
The Prospect of Serverless Scientific Computing and HPC,” in
High Performance Computing, 2018, pp. 154–168.

[48] M. Laul, “Serverless Case Study - Netflix,” 2018. [Online]. Avail-
able: https://dashbird.io/blog/serverless-case-study-netflix/

[49] A. Eivy and J. Weinman, “Be Wary of the Economics of ”Server-
less” Cloud Computing,” IEEE Cloud Computing, vol. 4, pp. 6–12,
2017.

[50] A. Williams, “Autodesk Goes Serverless in the AWS Cloud,
Reduces Account-Creation Time by 99%,” https://amzn.to/
2Q3X0pV, 2017.

[51] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee, C. Kozyrakis,
M. Zaharia, and K. Winstein, “From Laptop to Lambda: Out-
sourcing Everyday Jobs to Thousands of Transient Functional
Containers,” in 2019 USENIX Annual Technical Conference, 2019,
pp. 475–488.

[52] S. E. Brockwell and I. R. Gordon, “A comparison of statistical
methods for meta-analysis,” Statistics in medicine, vol. 20, no. 6,
pp. 825–840, 2001.

[53] S. Makridakis, “Accuracy measures: theoretical and practical con-
cerns,” International journal of forecasting, vol. 9, pp. 527–529, 1993.

[54] J. L. Myers, A. Well, and R. F. Lorch, Research design and statistical
analysis. Routledge, 2010.

[55] K.-I. Goh and A.-L. Barabási, “Burstiness and memory in complex
systems,” EPL (Europhysics Letters), vol. 81, no. 4, p. 48002, 2008.

[56] A. Ali-Eldin, O. Seleznjev, S. Sjöstedt-de Luna, J. Tordsson, and
E. Elmroth, “Measuring cloud workload burstiness,” in 2014
IEEE/ACM 7th International Conference on Utility and Cloud Com-
puting, 2014, pp. 566–572.

[57] S. Kounev and et al., “Toward a Definition for Serverless Comput-
ing,” in Serverless Computing (Dagstuhl Seminar 21201). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021, vol. 11, ch.
Chapter 5.1, pp. 56–59.

Simon Eismann is currently a PhD student
at the chair of software engineering at
the University of Würzburg. He received
the M.S. degree from the University of
Würzburg in 2017. His research interests
include cloud computing, serverless, and
performance analysis/modeling. Contact him at
simon.eismann@uni-wuerzburg.de.

Joel Scheuner is a PhD student at the division
of software engineering at Chalmers University
of Technology and the University of Gothenburg.
He received his M.S. in Software Systems from
the University of Zurich in 2017. His research
interests include cloud computing, performance
engineering, and software engineering. Contact
him at scheuner@chalmers.se.

Erwin van Eyk is a PhD student at Vrije Uni-
versiteit Amsterdam, the Netherlands, and the
chair of the SPEC-RG Cloud Serverless activity.
In 2019, he received his M.Sc. degree from TU
Delft, the Netherlands, for work on cloud com-
puting and serverless workflows. Contact him at
e.vaneyk@atlarge-research.com.

Maximilian Schwinger is a PhD student at the
chair for software engineering at the University of
Würzburg and received his Diploma in Computer
Science from the TU Munich in 2006. Since then,
he is working for the German Aerospace Center
(DLR) as a Software and Systems Engineer.
His research interest includes high-performance
computing and cloud-based computin in the do-
main of satellite-based earth observation. Con-
tact him at maximilian.schwinger@dlr.de.

Johannes Grohmann is currently a PhD stu-
dent at the chair of software engineering at
the University of Würzburg. He received the
M.S. degree from the University of Würzburg
in 2016. His research interests include server-
less and cloud computing and performance
model learning and analysis. Contact him at
johannes.grohmann@uni-wuerzburg.de.

Nikolas Herbst is a research group leader at
the chair of software engineering at the Uni-
versity of Würzburg. He received a PhD from
the University of Würzburg in 2018 and serves
as elected vice-chair of the SPEC Research
Cloud Group. His research topics include pre-
dictive data analysis, elasticity, auto-scaling, re-
source management, performance evaluation
of virtualized environments. Contact him at
nikolas.herbst@uni-wuerzburg.de.

Cristina L. Abad is an associate professor at
Escuela Superior Politecnica del Litoral, ESPOL,
in Ecuador, where she leads the Distributed Sys-
tems Research Lab (DiSEL). She obtained MS
and PhD in CS degrees from the University of Illi-
nois at Urbana-Champaign. Her main research
interests lie at the intersection of distributed sys-
tems and performance engineering. Contact her
at cabad@fiec.espol.edu.ec.

Alexandru Iosup is the University Research
Chair at Vrije Universiteit Amsterdam and mem-
ber of the Young Royal Academy of Arts and
Sciences of the Netherlands. He is the chair
of the Massivizing Computer Systems research
group at the VU and the SPEC-RG Cloud group.
His work in distributed systems and ecosystems
has received prestigious recognition, including
the 2016 Netherlands ICT Researcher of the
Year. He can be contacted at A.Iosup@vu.nl.

https://dashbird.io/blog/serverless-case-study-netflix/
https://amzn.to/2Q3X0pV
https://amzn.to/2Q3X0pV

	Introduction
	Serverless Application Collection
	Methodology
	Resulting collection

	Serverless Application Characteristics
	Methodology
	Resulting Characteristics
	How are serverless applications implemented?
	How does a typical serverless architecture look?
	What are common traffic patterns for serverless applications?
	What are serverless applications used for?
	Why are practitioners choosing serverless?
	How complex are serverless applications?

	Finding community consensus
	Methodology
	Identification of Related Study
	Mapping the Results to our Framework
	Quantifying the Degree of Agreement

	Results of Consensus Analysis
	Platform and Programming Language
	Number of Functions
	Trigger Types
	Burstiness
	Application Type
	Function runtime
	Motivation

	Threats to Validity
	Internal Validity
	Construct Validity
	External Validity

	Conclusion
	Acknowledgements
	References
	Biographies
	Simon Eismann
	Joel Scheuner
	Erwin van Eyk
	Maximilian Schwinger
	Johannes Grohmann
	Nikolas Herbst
	Cristina L. Abad
	Alexandru Iosup

