
Noname manuscript No.
(will be inserted by the editor)

Software Microbenchmarking in the Cloud.
How Bad is it Really?

Christoph Laaber · Joel Scheuner ·
Philipp Leitner

the date of receipt and acceptance should be inserted later

This is a post-peer-review, pre-copyedit version of an article published in
Empirical Software Engineering. The final authenticated version is available
online at: http://dx.doi.org/10.1007/s10664-019-09681-1

Abstract Rigorous performance engineering traditionally assumes measur-
ing on bare-metal environments to control for as many confounding factors
as possible. Unfortunately, some researchers and practitioners might not have
access, knowledge, or funds to operate dedicated performance-testing hard-
ware, making public clouds an attractive alternative. However, shared public
cloud environments are inherently unpredictable in terms of the system perfor-
mance they provide. In this study, we explore the effects of cloud environments
on the variability of performance test results and to what extent slowdowns
can still be reliably detected even in a public cloud. We focus on software
microbenchmarks as an example of performance tests and execute extensive
experiments on three different well-known public cloud services (AWS, GCE,
and Azure) using three different cloud instance types per service. We also com-
pare the results to a hosted bare-metal offering from IBM Bluemix. In total, we
gathered more than 4.5 million unique microbenchmarking data points from
benchmarks written in Java and Go. We find that the variability of results
differs substantially between benchmarks and instance types (by a coefficient
of variation from 0.03% to > 100%). However, executing test and control ex-

Christoph Laaber
Department of Informatics, University of Zurich, Zurich, Switzerland
E-mail: laaber@ifi.uzh.ch

Joel Scheuner
Software Engineering Division, Chalmers | University of Gothenburg, Gothenburg, Sweden
E-mail: scheuner@chalmers.se

Philipp Leitner
Software Engineering Division, Chalmers | University of Gothenburg, Gothenburg, Sweden
E-mail: philipp.leitner@chalmers.se

2 Laaber et al.

periments on the same instances (in randomized order) allows us to detect
slowdowns of 10% or less with high confidence, using state-of-the-art statis-
tical tests (i.e., Wilcoxon rank-sum and overlapping bootstrapped confidence
intervals). Finally, our results indicate that Wilcoxon rank-sum manages to
detect smaller slowdowns in cloud environments.

Keywords performance testing, microbenchmarking, cloud, performance-
regression detection

1 Introduction

In many domains, renting computing resources from public clouds has largely
replaced privately owning computational resources, such as server racks. This
is due to economic factors, but also due to the convenience of outsourcing
tedious data center or server management tasks (Cito et al 2015). However,
one often-cited disadvantage of public clouds is that the inherent loss of con-
trol can lead to highly variable and unpredictable performance, for example
due to co-located noisy neighbors (Leitner and Cito 2016; Farley et al 2012;
Iosup et al 2011). Therefore, using cloud resources, such as virtual machines
(VMs), in performance testing environments is a challenging proposition be-
cause predictability and low-level control over the hardware and software is
key in traditional performance engineering. Nevertheless, there are many good
reasons why researchers and practitioners might be interested in adopting
public clouds as execution environments for their performance experiments.
The experimenters might have insufficient access to dedicated hardware re-
sources for conducting performance testing at a designated scale. They may
wish to evaluate the performance of applications under “realistic conditions”,
which nowadays often refers to cloud environments. They may wish to lever-
age industrial-strength infrastructure-automation tools (e.g., AWS CloudFor-
mation1) to easily provision resources on demand, which allows to massively
parallelize the execution of large benchmarking suites.

In this paper, we ask the question whether using a standard public cloud
as an execution environment for software performance experiments is always
a bad idea. We focus on the cloud service model Infrastructure as a Service
(IaaS) and on the performance testing type of software microbenchmarking
in the programming languages Java and Go. IaaS clouds provide relatively
low-level access and configurability while allowing for high scalability of ex-
periments; and software microbenchmarks emerge as the performance evalu-
ation strategy of choice for library-type projects. Software microbenchmarks
can be seen as the unit-test equivalent for performance and are sometimes
even referred to as performance unit tests (Stefan et al 2017). They are rel-
atively short-running (e.g., < 1ms) performance tests against small software
units (e.g., methods), which are typically tested in isolation without a fully-
deployed system (as used for load testing). A microbenchmark is repeatedly

1 https://aws.amazon.com/cloudformation

https://aws.amazon.com/cloudformation

Software Microbenchmarking in the Cloud. How Bad is it Really? 3

executed (called invocations) for a defined time period (e.g., 1s) and reports
the mean execution time over all invocations (called iteration). The result of
a microbenchmark is then the distribution of multiple iterations (e.g., 20).

In our previous work, we already studied performance stability of IaaS
clouds using benchmarks for general system performance (Leitner and Cito
2016). We focused on running low-level, domain-independent system tests with
different characteristics (e.g., IO or CPU benchmarks). Further, we have also
previously executed software microbenchmarks in a bare-metal and one cloud
environment to study the quality of open source microbenchmark suites (Laaber
and Leitner 2018). Our results in these papers motivated a more extensive
study, dedicated to the reliability of software microbenchmarking in public
clouds, which is the core contribution of the present study. In particular, we
quantify to what extent slowdowns can still be reliably detected in public
clouds.

Concretely, we address the following research questions:

RQ 1 How variable are microbenchmark results in different cloud environ-
ments?

RQ 2 Which slowdowns in microbenchmark results can we detect 95% of the
time with at most 5% false positives?

We base our research on 19 real microbenchmarks sampled from four open-
source software (OSS) projects written in Java or Go. We aimed for 20 bench-
marks, five for each project (see Section 3.1), however, due to a configuration
execution error we lack results for one benchmark. We study cloud instances
(i.e., VMs in cloud environments) in three of the most prominent public IaaS
providers, namely Google Compute Engine (GCE), Amazon Elastic Compute
Cloud (EC2), and Microsoft Azure, and we contrast these results against a
dedicated bare-metal machine deployed using IBM Bluemix. We also evaluate
and compare the impact of common deployment strategies for performance
tests in the cloud, such as running experiments on different cloud instances
of the same type or repeating experiments on the same instance. Hereby, we
use randomized multiple interleaved trials as recently proposed as best prac-
tice (Abedi and Brecht 2017).

We find that result variability ranges from a coefficient of variation of 0.03%
to more than 100% between repeated executions of the same experiments. This
variability depends on the particular benchmark and the environment it is
executed in. Some benchmarks show high variability across all studied instance
types, whereas others are stable in only a subset of the environments. We
conclude that instability originates from different sources including variability
inherent to the benchmark, variability between trials (i.e., executions within
an instance), and variability between instances.

We further find that two state-of-the-art statistical tests for performance
evaluation (Bulej et al 2017), i.e., (1) Wilcoxon rank-sum with effect size

4 Laaber et al.

medium or larger and (2) overlapping confidence intervals of the mean com-
puted with statistical simulation (bootstrapping) both falsely report high num-
bers of performance changes (i.e., false positives (FPs)) when in fact neither
the benchmark nor production code has changed and the sample size (e.g.,
a single instance) is low. To mitigate this, benchmarks have to be repeatedly
executed on multiple instances and multiple times within an instance to lower
the numbers of FPs below an acceptable threshold (≤ 5% of 100 simulations),
hence making it feasible to use cloud instances as performance-test execution
environment.

Finally, we find that only 78% – 83% of the benchmark-environment com-
binations are able to reliably detect slowdowns at all, when test and control
experiments are not run on the same instances and 20 instances each are used.
Employing a strategy where test and control experiments are executed on the
same instances, all benchmark-environment combinations find slowdowns with
high confidence when utilizing ≥ 10 instances. In 77% – 83% of the cases, a
slowdown below 10% is reliably detectable when using trial-based sampling
and 20 instances. With respect to the difference between Wilcoxon rank-sum
and overlapping confidence intervals, the Wilcoxon test is superior in two re-
gards: (1) it is able to reliably detect smaller slowdowns, and (2) it is not as
computational-intensive and therefore takes less time.

Following these findings, we conclude that executing software microbench-
marking experiments is possible on cloud instances, albeit with some caveats.
Not all cloud providers and instance types are equally suited for performance
testing, and not all microbenchmarks lend themselves to reliably detect slow-
downs in cloud environments. In most settings, a substantial number of trials
or instances is required to achieve robust results. However, running test and
control groups on the same instances, optimally in random order, reduces the
number of required repetitions (i.e., number of trials or instances). Practi-
tioners can use our study as a blueprint to evaluate the stability of their own
performance microbenchmarks within their custom experimental environment.

The remainder of this paper is structured as follows. Section 2 introduces
relevant background information for this study, such as microbenchmarking,
the Java Microbenchmarking Harness (JMH) framework, and IaaS cloud ser-
vices. Section 3 outlines our research approach, describes the microbenchmark
and cloud-provider selection, and details the execution methodology. Sections 4
and 5 discuss the study results for both research questions, while Section 6
discusses main lessons learned as well as threats to the validity of the study.
Related research is discussed in Section 7, and finally the paper is concluded
in Section 8.

2 Background

This section summarizes software microbenchmarking and IaaS clouds as im-
portant concepts we use in our study.

Software Microbenchmarking in the Cloud. How Bad is it Really? 5

2.1 Software Microbenchmarking

Performance testing is a common term used for a wide variety of different ap-
proaches. In this paper, we focus on one specific technique, namely software mi-
crobenchmarking, sometimes also referred to as performance unit tests (Horky
et al 2015). Microbenchmarks are short-running (e.g., < 1ms) unit-test-like
performance tests that aim to measure fine-grained performance metrics, such
as method-level execution times, throughput, or heap utilization. Typically,
frameworks repeatedly execute microbenchmarks for a certain time duration
(e.g., 1s) and report their mean execution time. The nature of these perfor-
mance tests is different from traditional load tests where full applications are
deployed and long-running load scenarios simulate the load of multiple users.

JMH is part of the OpenJDK implementation of Java and allows users to
specify benchmarks through Java annotations. Every public method annotated
with @Benchmark is executed as part of the performance test suite. Listing 1
shows an example benchmark from the RxJava project where the execution
time and throughput of a latched observer are measured. Other examples
measure logging (e.g., logger.info) in Log4j2 or filter by search terms in the
bleve text indexing library.

@State(Scope.Thread)
public class ComputationSchedulerPerf {

@State(Scope.Thread)
public static class Input

extends InputWithIncrementingInteger {
@Param ({ "100" })
public int size;

}

@Benchmark
public void observeOn(Input input) {

LatchedObserver <Integer > o =
input.newLatchedObserver ();

input.observable.observeOn(
Schedulers.computation ()

).subscribe(o);
o.latch.await();

}
}

Listing 1: JMH example (rxjava-5) from the RxJava project.

The Go programming language includes a benchmarking framework di-
rectly in their standard library2. This framework primarily follows the convention-
over-configuration paradigm. For instance, benchmarks are defined in files end-
ing with _test.go as functions that have a name starting with Benchmark (see
Listing 2).

In our study, we use both JMH and Go microbenchmarks as test cases to
study the suitability of IaaS clouds for performance evaluation.

2 https://golang.org/pkg/testing

https://golang.org/pkg/testing

6 Laaber et al.

func BenchmarkTermFrequencyRowEncode(b *testing.B) {
row := NewTermFrequencyRowWithTermVectors (...)
b.ResetTimer ()
for i := 0; i < b.N; i++ {
row.Key()
row.Value()

}
}

Listing 2: Go benchmarking example (bleve-3) from the bleve project.

2.2 Infrastructure-as-a-Service Clouds

The academic and practitioner communities have nowadays widely agreed on
a uniform high-level understanding of cloud services following NIST (Mell and
Grance 2011). This definition distinguishes three service models: Infrastruc-
ture as a Service (IaaS), Platform as a Service (PaaS), and Software as a
Service (SaaS). These levels differ mostly in which parts of the cloud stack are
managed by the cloud provider and what is self-managed by the customer. In
IaaS, computational resources are acquired and released in the form of VMs or
containers. Tenants are relieved from the burden of operating physical servers
but are still required to administer their virtual servers. We argue that for the
scope of our research, IaaS is the most suitable model at the time of writing
as this model still allows for comparatively low-level access to the underlying
infrastructure. Further, setting up performance experiments in IaaS is substan-
tially simpler than doing the same in a typical PaaS system, where applications
need to be adapted to provider-specific interfaces. Hence, we focus on IaaS in
this paper.

In IaaS, a common abstraction is the notion of an instance: an instance
bundles resources (e.g., CPUs, storage, networking capabilites, etc.) defined
through an instance type and an image. The instance type governs how pow-
erful the instance is supposed to be (e.g., what hardware it receives), while
the image defines the software initially installed. More powerful instance types
are typically more expensive, even though there is often significant variation
even between individual instances of the same type (Ou et al 2012; Farley
et al 2012). Instance types are commonly grouped into families, each repre-
senting a different usage class (e.g., general purpose, compute-optimized, or
memory-optimized).

3 Approach

Traditionally, performance measurements are conducted in dedicated environ-
ments with the goal to reduce the non-deterministic factors inherent in all
performance tests to a minimum (Mytkowicz et al 2009). Specifically, hard-
ware and software optimizations are disabled on test machines, no background
services are running, and each machine has a single tenant. These dedicated
environments require high effort to maintain and have considerable acquisi-
tion costs. Conversely, cloud providers offer different types of hardware for

Software Microbenchmarking in the Cloud. How Bad is it Really? 7

on-demand rental that have no maintenance costs and low prices. However,
the lack of control over optimizations, virtualization, and multi-tenancy neg-
atively affects performance measurements (Leitner and Cito 2016). To study
the extent of these effects, we take the following approach. We sample a subset
of benchmarks from four OSS projects written in two programming languages.
These benchmarks are executed repeatedly on the same cloud instance as well
as on different cloud-instance types from multiple cloud providers. The results
are then compared in terms of variability and detectability of slowdowns.

Note that we are not benchmarking cloud infrastructure itself but rather
software executed on it, which mostly falls into the category of library-like
projects such as Log4j2. In this study, we are also not concerned with testing for
performance of deployed and running applications (e.g., Agilefant3, Dell DVD
Store4, or JPetStore5) in the fashion of a load test but evaluating performance
of fine-grained software units (e.g., methods) using software microbenchmarks.
We do not claim that software microbenchmarks are a replacement for load
tests. Neither is this paper concerned with finding appropriate benchmarks for
slowdown detection in cloud environments. Research into these other areas is
required as part of potential future work. In the scope of this paper, we study
the result variability and slowdown detectability of existing benchmark suites.

3.1 Project and Benchmark Selection

The study is based on 20 microbenchmarks selected from four OSS projects,
two of which are written in Java and two in Go. Unfortunately, due to a con-
figuration error, we are lacking all results for one benchmark (bleve-1) and
consequently omit this benchmark from all remaining discussions. We decided
to choose Java as it has been ranked highly in programming-language rank-
ings (e.g., Tiobe6), is executed in a VM (i.e., the JVM) with dynamic compiler
optimizations, and has a microbenchmarking framework available that is used
by real OSS projects (Stefan et al 2017). The Go language complements our
study selection as a new programming language being introduced in 2009.
It is backed by Google, has gained significant traction, compiles directly to
machine-executable code, and comes with a benchmarking framework7 as part
of its standard library. We chose these languages due to their different char-
acteristics, which improves generalizability of our results.

In an earlier study (Laaber and Leitner 2018), we investigated OSS projects
in these languages that make extensive use of microbenchmarking. We chose
real-world projects that are non-trivial and have existing microbenchmark
suites. Table 1 shows detailed information about these projects, such as the
Github URL, the commit snapshot used for all experiments, and the total

3 https://github.com/Agilefant/agilefant
4 https://github.com/dvdstore/ds3
5 https://github.com/mybatis/jpetstore-6
6 https://www.tiobe.com/tiobe-index
7 https://golang.org/pkg/testing

https://github.com/Agilefant/agilefant
https://github.com/dvdstore/ds3
https://github.com/mybatis/jpetstore-6
https://www.tiobe.com/tiobe-index
https://golang.org/pkg/testing

8 Laaber et al.

number of benchmarks in the project at the time of study. We also report
popularity metrics, such as stars, watchers, and forks on GitHub. Note that
log4j2 ’s star count is relatively low. This is due to the Github repository
being a mirror of the main repository hosted directly by the Apache Software
Foundation. The four selected projects represent good candidates of study
subjects, as they are among the largest ones in their languages with respect
to popularity (indicated by GitHub stars, watchers, and forks) and the size of
their benchmark suites.

Project Github URL Commit Stars Watchers Forks Benchs
https://github.com/ (#)

Log4j2 apache/logging-log4j2 8a10178 369 58 256 437
RxJava ReactiveX/RxJava 2162d6d 27742 1951 4882 977
bleve blevesearch/bleve 0b1034d 3523 209 305 70
etcd coreos/etcd e7e7451 15084 920 2934 41

Table 1: Overview of study-subject projects.

For benchmark selection, we executed the entire benchmark suites of all
study subjects five times on an in-house bare-metal server at the first author’s
university, requiring between 37.8 minutes (etcd) and 8.75 hours (RxJava)
of execution time per trial (Laaber and Leitner 2018). For each project, we
ranked all benchmarks in the order of result variability between these five
trials and selected the ones that are: the most stable, the most unstable, the
median, the 25th percentile, and the 75th percentile. Our intuition is to pick
five benchmarks from each project that range from stable to unstable results to
explore the effect of result variability on the ability to detect slowdowns. The
selected benchmarks are summarized in Table 2, where the first benchmark of
each project (e.g., log4j2-1) is the most stable and the last (log4j2-5) the most
unstable according to our previous study.

3.2 Cloud Provider Selection

Within three of the most-prominent cloud providers, we choose three different
families of instance types. The selected providers are Amazon with Amazon
Web Services (AWS) EC2, Microsoft with Azure, and Google with Google
Compute Engine (GCE). For each provider, we choose instance types in the
families of entry-level general purpose (GP), compute-optimized (CPU), and
memory-optimized (Mem). We expect instance types with better specifica-
tions to outperform the entry-level ones, and therefore this study establishes
a base line of what is possible with the cheapest available cloud-resource op-
tions. Table 3 lists the selected instance types including information about the
data-center region, processor and memory specification, and hourly prices at
experiment time (summer 2017). All cloud instances run Ubuntu 17.04 64-bit.

https://github.com/
https://github.com/apache/logging-log4j2
https://github.com/ReactiveX/RxJava
https://github.com/blevesearch/bleve
https://github.com/coreos/etcd

Software Microbenchmarking in the Cloud. How Bad is it Really? 9
S
h
or

t
P
ac

ka
ge

B
en

ch
m

ar
k

N
am

e
N

am
e

an
d

P
ar

am
et

er
s

Java

Log4j2

lo
g4

j2
-1

or
g.

ap
ac

he
.l
og

gi
ng

.l
og

4j
.p

er
f.
jm

h
So

rt
ed

A
rr

ay
V
sH

as
hM

ap
B

en
ch

m
ar

k.
ge

tV
al

ue
H

as
hC

on
te

xt
D

at
a

co
un

t
=

5;
le

ng
th

=
20

lo
g4

j2
-2

or
g.

ap
ac

he
.l
og

gi
ng

.l
og

4j
.p

er
f.
jm

h
T

hr
ea

dC
on

te
xt

B
en

ch
m

ar
k.

pu
tA

nd
R

em
ov

e
co

un
t

=
50

;
th

re
ad

C
on

te
xt

M
ap

A
li
as

=
N

oG
cS

or
te

dA
rr

ay
lo

g4
j2

-3
or

g.
ap

ac
he

.l
og

gi
ng

.l
og

4j
.p

er
f.
jm

h
P
at

te
rn

L
ay

ou
tB

en
ch

m
ar

k.
se

ri
al

iz
ab

le
M

C
N

oS
pa

ce
lo

g4
j2

-4
or

g.
ap

ac
he

.l
og

gi
ng

.l
og

4j
.p

er
f.
jm

h
T

hr
ea

dC
on

te
xt

B
en

ch
m

ar
k.

le
ga

cy
In

je
ct

W
it

ho
ut

P
ro

p
er

ti
es

co
un

t
=

5;
th

re
ad

C
on

te
xt

M
ap

A
li
as

=
N

oG
cO

p
en

H
as

h
lo

g4
j2

-5
or

g.
ap

ac
he

.l
og

gi
ng

.l
og

4j
.p

er
f.
jm

h
So

rt
ed

A
rr

ay
V
sH

as
hM

ap
B

en
ch

m
ar

k.
ge

tV
al

ue
H

as
hC

on
te

xt
D

at
a

co
un

t
=

50
0;

le
ng

th
=

20

RxJava

rx
ja

va
-1

rx
.o

p
er

at
or

s
O

p
er

at
or

Se
ri

al
iz

eP
er

f.
se

ri
al

iz
ed

T
w

oS
tr

ea
m

sS
li
gh

tl
yC

on
te

nd
ed

si
ze

=
10

00
rx

ja
va

-2
rx

.o
p
er

at
or

s
F
la

tM
ap

A
sF

il
te

rP
er

f.
ra

ng
eE

m
pt

yC
on

ca
tM

ap
co

un
t

=
10

00
;
m

as
k

=
3

rx
ja

va
-3

rx
.o

p
er

at
or

s
O

p
er

at
or

P
ub

li
sh

P
er

f.
b
en

ch
m

ar
k

as
yn

c
=

fa
ls

e;
ba

tc
hF

re
qu

en
cy

=
4;

ch
il
dC

ou
nt

=
5;

si
ze

=
10

00
00

0
rx

ja
va

-4
rx

.o
p
er

at
or

s
O

p
er

at
or

P
ub

li
sh

P
er

f.
b
en

ch
m

ar
k

as
yn

c
=

fa
ls

e;
ba

tc
hF

re
qu

en
cy

=
8;

ch
il
dC

ou
nt

=
0;

si
ze

=
1

rx
ja

va
-5

rx
.s

ch
ed

ul
er

s
C

om
pu

ta
ti

on
Sc

he
du

le
rP

er
f.
ob

se
rv

eO
n

si
ze

=
10

0

Go

bleve

bl
ev

e-
1

/s
ea

rc
h/

co
ll
ec

to
r/

to
pn

_
te

st
.g

o
B

en
ch

m
ar

kT
op

10
0o

f5
0S

co
re

s
bl

ev
e-

2
/i

nd
ex

/u
ps

id
ed

ow
n/

b
en

ch
m

ar
k_

nu
ll
_

te
st

.g
o

B
en

ch
m

ar
kN

ul
lI
nd

ex
in

g1
W

or
ke

rs
10

B
at

ch
bl

ev
e-

3
/i

nd
ex

/u
ps

id
ed

ow
n/

ro
w

_
te

st
.g

o
B

en
ch

m
ar

kT
er

m
F
re

qu
en

cy
R

ow
D

ec
od

e
bl

ev
e-

4
/s

ea
rc

h/
co

ll
ec

to
r/

to
pn

_
te

st
.g

o
B

en
ch

m
ar

kT
op

10
00

of
10

00
00

Sc
or

es
bl

ev
e-

5
/i

nd
ex

/u
ps

id
ed

ow
n/

b
en

ch
m

ar
k_

go
le

ve
ld

b_
te

st
.g

o
B

en
ch

m
ar

kG
oL

ev
el

D
B

In
de

xi
ng

2W
or

ke
rs

10
B

at
ch

etcd

et
cd

-1
/c

li
en

t/
ke

ys
_

b
en

ch
_

te
st

.g
o

B
en

ch
m

ar
kM

an
yS

m
al

lR
es

p
on

se
U

nm
ar

sh
al

et
cd

-2
/i

nt
eg

ra
ti

on
/v

3_
lo

ck
_

te
st

.g
o

B
en

ch
m

ar
kM

ut
ex

4W
ai

te
rs

et
cd

-3
/c

li
en

t/
ke

ys
_

b
en

ch
_

te
st

.g
o

B
en

ch
m

ar
kM

ed
iu

m
R

es
p
on

se
U

nm
ar

sh
al

et
cd

-4
/m

vc
c/

kv
st

or
e_

b
en

ch
_

te
st

.g
o

B
en

ch
m

ar
kS

to
re

P
ut

et
cd

-5
/m

vc
c/

ba
ck

en
d/

ba
ck

en
d_

b
en

ch
_

te
st

.g
o

B
en

ch
m

ar
kB

ac
ke

nd
P
ut

T
ab

le
2:

O
ve
rv
ie
w

of
se
le
ct
ed

be
nc
hm

ar
ks
.
Fo

r
JM

H
be

nc
hm

ar
ks

w
it
h
m
ul
ti
pl
e
pa

ra
m
et
er
s,

w
e
al
so

lis
t
th
e
co
nc
re
te

pa
ra
m
e-

te
ri
za
ti
on

w
e
us
ed
.T

he
G
o
m
ic
ro
be

nc
hm

ar
k
fr
am

ew
or
k
do

es
no

t
us
e
th
e
no

ti
on

of
pa

ra
m
et
er
s.

10 Laaber et al.

Provider Data Center Family Instance Type vCPU Memory Cost
[GB] [USD/h]

AWS us-east-1 GP m4.large 2 8.00 0.1000
AWS us-east-1 CPU c4.large 2 3.75 0.1000
AWS us-east-1 Mem r4.large 2 15.25 0.1330
Azure East US GP D2s v2 2 8.00 0.1000
Azure East US CPU F2s 2 4.00 0.1000
Azure East US Mem E2s v3 2 16.00 0.1330
GCE us-east1-b GP n1-standard-2 2 7.50 0.0950
GCE us-east1-b CPU n1-highcpu-2 2 1.80 0.0709
GCE us-east1-b Mem n1-highmem-2 2 13.00 0.1184

Table 3: Overview of used cloud-instance types.

Additionally, we selected a bare-metal machine available for rent from IBM
in its Bluemix cloud. A bare-metal instance represents the closest to a con-
trolled performance testing environment that one can get from a public cloud
provider. We used an entry-level bare-metal server equipped with a 2.1GHz
Intel Xeon IvyBridge (E5-2620-V2-HexCore) processor and 16GB of memory,
running Ubuntu 16.04 64-bit version, hosted in IBM’s data center in Amster-
dam, NL. We specifically deactivated Hyperthreading and Intel’s TurboBoost.
Moreover, we attempted to disable frequency scaling, but manual checks re-
vealed that this setting is ineffective and presumably overridden by IBM.

3.3 Execution

We use the following methodology to execute benchmarks on cloud instances
and collect the resulting performance data. For each cloud instance type, as
listed in Table 3, we create 50 different instances. On each instance, we schedule
10 consecutive experiment trials of each benchmark and randomize the order
within each trial, following the method proposed by Abedi and Brecht (2017).
Within each trial, every benchmark (e.g., etcd-1) consists of 50 iterations (e.g.,
using the -i50 parameter of JMH) and every iteration produces a single data
point, which reports the execution time in ns. For JMH benchmarks, we also
run and discard 10 warmup iterations prior to the measurement iterations
to reach steady-state performance (Georges et al 2007; Kalibera and Jones
2013). Note that 10 warmup iterations of 1 second might not be sufficient to
bring the JVM into a steady state, depending on the microbenchmark under
consideration. Ideally the warmup time and iterations would be dynamically
determined (e.g., following an approach as outlined by Georges et al (2007)),
which JMH does not support yet. For practical situations and the context of
our study, 10 warmup iterations are considered sufficient. We use the same
terminology of instances, trials, iterations, and data points in the remainder
of the paper. These concepts are also summarized in Figure 1.

Formally, we run performance measurements for all benchmarks b ∈ B (cf.
Table 2) on all environments e ∈ E (e.g., AWS GP). We refer to the combi-
nation of a benchmark b run on a particular environment e as configuration

Software Microbenchmarking in the Cloud. How Bad is it Really? 11

…

i-1
dp1
dp2
...

dp1
dp2
...

......
dp1
dp2
...

i-2
dp1
dp2
...

dp1
dp2
...

dp1
dp2
...

......

i-n

......

AWS CPU

i-1
dp1
dp2
...

dp1
dp2
...

......
dp1
dp2
...

i-2
dp1
dp2
...

dp1
dp2
...

dp1
dp2
...

......

i-n

......

Key:

IaaS Instance Type

IaaS Instance

Benchmark Trial
(in Random Order),
Shape determines
distinct benchmark

dp1, dp2 Individual Result
Data Points

AWS GP

i-1
t-1 dp1

dp2
...

t-2 dp1
dp2
...

......
t-1 dp1

dp2
...

i-2
t-1 dp1

dp2
...

t-2 dp1
dp2
...

t-1 dp1
dp2
...

......

i-n

......

Fig. 1: Schematic view of instance types (e.g., AWS GP), instances (e.g., i-1),
and randomized-order trials (e.g., t-1) on each instance.

c ∈ C where C = B × E. All configurations are executed on 50 instances
instances = 50, with 10 trials per instance trials = 10, and 50 iterations
iters = 50. The configuration results (i.e., data points reporting execution
times in ns, see Section 2.1) of a single trial are defined as the set M c

i,t in
Equation 1 (cf. Benchmark Trial in Figure 1, different shapes refer to distinct
benchmarks), where the subscript i determines the instance, the subscript t
represents the trial, and the superscript c describes the configuration where
the respective results are from.

M c
i,t = {dpj ∈ R+ | 0 < j ≤ iters} (1)

Consequently, the configuration-execution order within an instance of a
particular environment e is specified as the ordered set Me

i in Equation 2,
where B′t is the benchmark set B in potentially different randomized order of
each trial t.

Me
i = {M c

i,t | 0 < t ≤ trials ∧ c = (b, e) ∈ C ∧ b ∈ B′t} (2)

The set of measurements for all benchmarks b, instances i, and trials t of
a particular environment e is then defined as Me in Equation 3.

Me =
⋃

0<i≤instances

Me
i (3)

For setting up the instances we used Cloud Workbench8 (Scheuner et al
2014), a toolkit for conducting cloud benchmarking experiments. Cloud Work-
bench sets up machines with Vagrant9 and Chef, collects performance mea-

8 https://github.com/sealuzh/cloud-workbench
9 https://www.vagrantup.com

https://github.com/sealuzh/cloud-workbench
https://www.vagrantup.com

12 Laaber et al.

surement results, and delivers the results in the form of CSV files for analysis.
We collected our study data between July and October 2017.

Using this study configuration, we collected more than 4.5 million unique
data points from the selected benchmarks. However, due to the large scale of
our experiments and the inherent instability of the environment, transient er-
rors (e.g., timeouts) are unavoidable. We apply a conservative outlier removal
strategy, where we remove all data points that are one or more orders of mag-
nitude higher than the median. These outliers are due to the non-deterministic
nature of cloud resources such as multi-tenancy, decreased network bandwidth,
or instance volatility. None of the cloud providers offer information nor did we
explicitly record cloud failure events that would explain the reasons for these
outliers. Due to the long-tailed nature of performance-measurement data, we
did not remove outliers more aggressively (e.g., 3 standard deviations from the
mean) because they might be correct extreme values belonging to the long-
tail of the result distribution. Table 4 lists for each instance type across all
instances, trials, and iterations how many data points we have collected and
how many data points remain after outlier removal.

Short Name Instance Type Total Post-Cleaning

AWS GP m4.large 474952 474656
AWS CPU c4.large 475000 474999
AWS MEM r4.large 474953 474951
Azure GP D2s v2 472636 472122
Azure CPU F2s 473132 473041
Azure MEM E2s v3 470570 470400
GCE GP n1-standard-2 474491 474490
GCE CPU n1-highcpu-2 474725 474546
GCE MEM n1-highmem-2 474716 474337
Bluemix (BM) - 474436 474185

Table 4: Overview of the number of collected data points per cloud instance
type, and how many data points remain after data cleaning.

In particular, Azure instances were most affected by outlier removal, where
up to 8 of the studied benchmarks had at least one data point cleaned. The
two benchmarks that have the most outliers removed are log4j2-5 and etcd-2,
which comes as no surprise as these two have also the highest variability (see
Table 5). About 1% of the two benchmarks’ data points per instance type are
cleaned.

4 Benchmark Variability in the Cloud

To answer RQ 1, we study the benchmarks of all projects in terms of their
result variability in all chosen environments. For all configurations (i.e., all
benchmarks on all instance types), we report the variability of each bench-
mark across all 50 instances, 10 trials on each instance, and 50 iterations

Software Microbenchmarking in the Cloud. How Bad is it Really? 13

per trial. We use the coefficient of variation (CV), also referred to as rela-
tive standard deviation, of a set of benchmark measurements M in percent
as the measure of variability cv : M → R+. cv is defined as cv(M) = σ(M)

µ(M) ,
with σ(M) representing the standard deviation and µ(M) denoting the mean
value of all data points of an set of measurements, where M c

i,t ∈ M . CV is a
statistical measure for dispersion among a population of values, in this case
performance variability of microbenchark results as obtained from executions
on cloud instances. CVs have been used previously in similar studies to ours,
such as Leitner and Cito (2016).

The set of measurements of a specific configuration c across all trials and
instances is defined as M c in Equation 4.

M c =
{
M c′

i,t ∈Me | c′ = c
}

(4)

Further, the variability of a configuration (i.e., benchmark-environment
combination) is defined as V total,c in Equation 5. V total,c represents the vari-
ability of a single configuration (i.e., the CV) of the union of all collected
measurements of a benchmark b executed in an environment e across all in-
stances i and trials t.

V total,c = cv
(⋃
Mc

i,t∈Mc

M c
i,t

)
(5)

Table 5 reports these CV (in percent, that is 100 · V total,c) variabilities for
all studied configurations (e.g., log4j2-1, AWS GP) as numerical values and
further provides an indication of the relative 95% confidence interval widths
(RCIW) of these values. The RCIW describes the estimated spread of the
population’s CV, as computed by statistical simulation (bootstrap with 1000
iterations). It provides an indication how variable the values in Table 5 are.
A high variability of the benchmark in an environment (e.g., log4j2-5 in all
environments) does not necessarily mean that the CV value is highly variable
itself (as indicated by the circles). # represents a RCIW below 30%, G# a
RCIW between 30% and 60%, and a RCIW larger than 60%. Note that
the dispersion observed in this table originates from three different sources of
variability: (1) the difference in performance between different cloud instances
of the same type, (2) the variability between different trials of an instance, and
(3) the “inherent” variability of a benchmark, i.e., how variable the performance
results are, even in the best case. Consequently, a large CV in Table 5 can
have different sources such as an unpredictable instance type or an unstable
benchmark. We elaborate on the different sources of variability later in this
section.

4.1 Differences between Benchmarks and Instance Types

It is evident that the investigated benchmarks have a wide spectrum of re-
sult variability, ranging from 0.03% for rxjava-1 on Bluemix, to 100.68% for

14 Laaber et al.

Benchs AWS GCE Azure BM
GP CPU Mem GP CPU Mem GP CPU Mem

log4j2-1 45.41 G# 42.17 # 48.53 # 41.40 # 43.47 # 44.38 # 46.19 # 40.79 G# 51.79 # 41.95 #
log4j2-2 7.90 # 4.89 # 3.92 G# 10.75 G# 9.71 G# 11.29 G# 6.18 G# 6.06 # 11.01 G# 3.83 #
log4j2-3 4.86 3.76 G# 2.53 G# 10.12 # 9.18 G# 10.15 G# 13.89 7.55 15.46 3.02
log4j2-4 3.67 # 3.17 G# 4.60 # 10.69 G# 9.47 G# 10.52 # 17.00 7.79 G# 19.32 G# 6.66 #
log4j2-5 76.75 # 86.02 # 88.20 # 83.42 # 82.44 # 80.75 # 82.62 # 86.93 # 82.07 # 77.82 #
rxjava-1 0.04 # 0.04 # 0.05 # 0.04 G# 0.04 # 0.04 # 0.05 # 0.05 # 0.27 0.03 #
rxjava-2 0.70 # 0.61 G# 1.68 5.73 4.90 G# 6.12 G# 9.42 6.92 G# 13.38 G# 0.49 G#
rxjava-3 2.51 G# 3.72 G# 1.91 # 8.16 G# 8.28 G# 9.63 G# 6.10 G# 5.81 # 10.32 G# 4.14 #
rxjava-4 4.55 G# 4.18 G# 7.08 G# 8.07 10.46 8.82 17.06 10.22 21.09 1.42 #
rxjava-5 5.63 G# 2.81 # 4.04 # 14.33 11.39 G# 13.11 61.98 # 64.24 # 21.69 G# 1.76 G#

bleve-2 1.57 G# 1.32 G# 4.79 5.56 G# 6.09 G# 5.78 G# 5.97 G# 5.48 G# 13.29 G# 0.27 #
bleve-3 1.13 G# 7.53 7.77 10.08 G# 10.74 G# 14.42 G# 7.62 6.12 G# 14.41 G# 0.18 #
bleve-4 4.95 4.38 5.17 G# 11.24 G# 12.00 G# 14.52 G# 8.18 7.11 G# 15.24 G# 0.62 #
bleve-5 10.23 # 9.84 # 8.18 # 57.60 # 58.42 # 59.32 # 52.29 G# 46.40 52.74 # 10.16 #
etcd-1 1.03 G# 3.17 1.56 G# 6.45 G# 5.21 G# 7.62 6.36 4.89 G# 11.46 G# 0.15 G#
etcd-2 4.06 # 4.45 G# 6.28 66.79 # 69.07 # 69.18 # 100.68 G# 94.73 90.19 # 29.46 #
etcd-3 1.25 0.69 1.24 G# 7.15 G# 6.57 G# 9.26 4.95 G# 4.31 G# 9.89 G# 0.14 G#
etcd-4 6.80 # 6.00 # 7.34 # 34.53 # 34.34 # 34.37 # 12.28 G# 12.39 G# 22.92 G# 8.09 #
etcd-5 43.59 # 22.46 # 43.44 # 27.21 # 27.86 # 27.17 # 30.54 # 31.40 # 24.98 # 23.73 #

Table 5: Result variability in CV [%] for every combination of benchmark and
instance-type in the study. The circles indicate the relative 95%-confidence-
interval widths (RCIW) of the CV, computed with statistical simulation (i.e.,
bootstrap with 1000 simulations). # indicates a RCIW below 30%, G# between
30% and 60%, and greater than 60%.

etcd-2 on Azure GP. Consequently, the potential slowdown to be detected by
the benchmarks will also vary drastically depending on the benchmark and
instance type it is executed on. We observe three groups of benchmarks: (1)
some have a relatively small variability across all providers and instance types
(e.g., rxjava-1); (2) some show a high variability in any case (e.g., log4j2-5);
and (3) some are stable on some instance types but unstable on others (e.g.,
bleve-5). The first group’s result indicate that variability is low, as desired for
performance testing. However, the latter two groups are particularly interest-
ing for further analysis to identify reasons for their instability.

The second group consists of benchmarks with high variability across all
studied instance types. We observe three such benchmarks: log4j2-1, log4j2-5,
and to a lesser extent etcd-5. There are two factors that lead to high variability,
either the execution time of the benchmark is very short, or the benchmark
itself produces unstable results. log4j2-1 and log4j2-5 are examples for the
first case, with low execution times in the orders of only tens of nanosec-
onds. For these benchmarks, measurement inaccuracy becomes an important
factor for variability. log4j2-1 is also interesting because this benchmark has
been identified as very stable in our preliminary studies. We speculate that
for such extremely short-running benchmarks (i.e., 4.7ns on average), small
variations in the environment (i.e., our pre-study was on a controlled host in
the first author’s university) can have a substantial impact on the observed
measurements and their stability. This makes such benchmarks of questionable

Software Microbenchmarking in the Cloud. How Bad is it Really? 15

use for performance testing. In contrast, etcd-5 has an execution time around
250000ns on GCE Mem with a CV of 27.17%. Figure 2 depicts the results for
this benchmark on all 50 instances in beanplot notation. The variability of this
benchmark is comparable in all instance types, with CVs ranging from 22.46%
to 43.59%. Even the bare-metal machine from Bluemix has high variability of
23.73% CV. This indicates that the benchmark itself is rather low-quality and
produces unstable measurement results, independently of where it is executed.

●
●

●

●

● ● ● ●

●

●

●

● ● ●

●

●
●

●
●

●
●

●
●

● ●

● ● ●

● ●

●
●

●

●

●
● ●

●
● ●

●
●

●
●

●

● ● ●
● ●

1e+05

2e+05

3e+05

4e+05

5e+05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Instances

A
vg

. E
xe

c.
 T

im
e

[n
s]

Instance Variability − etcd−5 on GCE Mem

Fig. 2: Drilldown into the variability of etcd-5, an example of a benchmark
with high result variability across all instance types.

The third group of benchmarks exhibits high variability on some, but not
all, instance types. This group contains two sub-groups: (1) benchmarks that
have high standard deviations but similar medians; and (2) benchmarks that
have overall varying results, including substantially differing medians on dif-
ferent instances. An example for the first sub-group is log4j2-3 on GCE Mem
— and similarly on the other GCE and Azure instances — where the vari-
ability of the benchmark differs among the instances of the same instance
types (see Figure 3). We observe that this benchmark on this instance type
has a “long tail” distribution, which is common for performance data. How-
ever, the length of this long tail differs from instance to instance. A possible
explanation for this phenomenon is the behavior of other tenants on the same
physical machine as the instance. Other tenants may compete for resources
needed by a benchmark causing longer tails in the data. We have observed
this problem particularly in the case of the log4j2 benchmarks where manual
analysis of these benchmarks reveals that they tend to be IO-intensive (e.g.,
writing to log files). Previous work has shown that IO-bound operations suffer
particularly from noisy neighbors in a cloud (Leitner and Cito 2016).

More severe variabilities can be observed with the second sub-group, where
even medians are shifted substantially between instances. This is illustrated in

16 Laaber et al.

● ●

●
●

●
● ●

●
●

● ● ●
●

●
● ●

●
●

●

●

●

●

●

●
● ●

●

●

●

●
●

● ● ● ●
●

●

●
●

●
● ● ● ● ●

●

●

●

● ●

75

100

125

150

175

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Instances

A
vg

. E
xe

c.
 T

im
e

[n
s]

Instance Variability − log4j2−3 on GCE Mem

Fig. 3: Drilldown into the variability of log4j2-3, an example of a benchmark
with differing variability between instances.

Figure 4 for bleve-5 on Azure. A potential cause for this phenomenon is hard-
ware heterogeneity (Ou et al 2012; Farley et al 2012) where different hardware
configurations (e.g., different processor generations) are used for different in-
stances of the same instance type. Given that the medians fall into a small
number of different groups (only 2 in the case of Figure 4), we conclude that
hardware heterogeneity rather than multi-tenancy is the culprit for the vari-
ability observed in these cases. In this bleve-5 example on Azure, the hardware
metadata supports our conclusion by revealing that two different versions of
the same CPU model with distinct CPU clock speeds were provisioned.

Moreover, an interesting finding is that different instance-type families
(e.g., general-purpose versus compute-optimized) of the same cloud provider
mostly do not differ drastically from each other. The only cloud provider that
consistently has different variabilities between its instance types is Azure,
where the memory-optimized type does not perform as well as the general-
purpose type and the compute-optimized type. A reason for the similarity of
different instance types of the same provider may be that the different types
are backed by the same hardware, just with different CPU and RAM config-
uration. We assume that the benchmarks under study do not fully utilize the
provided hardware and thus show little difference.

4.2 Sources of Variability

We now discuss three different sources of variability in more detail. These
sources are (1) variability inherent to a benchmark (“Benchmark Variability”),
(2) variability between trials on the same instance (“Variability between Tri-
als”), and (3) variability between different instances of the same type (“Total
Variability”). This gives insight into whether variability originates from the

Software Microbenchmarking in the Cloud. How Bad is it Really? 17

●

●

● ● ● ●

●

● ●

● ● ● ● ● ● ●

●

●

●

● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

●

● ●

●

●

● ● ● ●

2.5e+09

5.0e+09

7.5e+09

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Instances

A
vg

. E
xe

c.
 T

im
e

[n
s]

Instance Variability − bleve−5 on Azure Mem

Fig. 4: Drilldown into the variability of bleve-5 on Azure, an example for a
benchmark with high benchmark-result variability due to differences in hard-
ware.

benchmark itself (e.g., non-deterministic behavior of the code written or the
runtime environment), from fluctuating performance within a single instance
(e.g., due to noisy neighbors), or from different performance behavior of in-
stances of the same type (e.g., hardware heterogeneity). Expectedly, the rel-
ative impact of these sources of variability differs for different configurations.
Some examples are depicted in Figure 5. Each subfigure contrasts three differ-
ent CV values: the mean CV per trial of a benchmark (Benchmark Variability),
the mean CV per instance (Variability between Trials), and the total CV of a
configuration as also given in Table 5 (Total Variability). The red error bars
signify the standard deviation. Notice that this is not meaningful for the Total
Variability that consists of a single CV value per configuration.

Recall the definition of the measurements for a configurationM c (see Equa-
tion 4) and the variability across all measurements V total,c (see Equation 5).
In a similar vein, we now define the other two variabilities discussed in this sec-
tion, i.e., variability inherent to a benchmark V trials,c and variability between
trials of an instance V instances,c.

Equation 6 specifies the variability inherent to a benchmark V trials,c. It is
the set of all CVs per trial of a benchmark b executed in an environment e.

V trials,c =
⋃

Mc
i,t∈Mc

cv(M c
i,t) (6)

V instances,c (see Equation 7) describes the variability within instances i for
all trials t (i.e., trials = 50) on this particular instance. It is the set of CVs for
each instance i (i.e., instances = 50), calculated from all measurements M c

i,t

(trials× instances = 500) taken on this instance.

18 Laaber et al.

V instances,c =
⋃

i′∈[1,instances]

cv
(⋃
Mc

i,t∈Mc∧i=i′
M c
i,t

)
(7)

Figure 5 depicts the variabilities V trials,c (top bar), V instances,c (middle
bar), and V total,c (bottom bar), for four configuration examples.

0 1 2 3 4

CV

AWS GP / etcd−2

0 25 50 75 100

CV

Azure GP / etcd−2

0 25 50 75

CV

AWS CPU / log4j2−5

0 10 20 30

CV

GCE Mem / etcd−4

Benchmark Variability

Variability between Trials

Total Variability

Fig. 5: Drilldown on the source of variability for four example configurations.

The top-left and top-right subfigures provide a drilldown on etcd-2 in dif-
ferent clouds, and explore in more detail why this curious benchmark is re-
markably stable on AWS and unstable in GCE and Azure (see also Table 5).
The top-left subfigure shows the benchmark on AWS GP. There is little differ-
ence in the CVs between trials, instances, and total, indicating that the small
variability of this benchmark largely originates from the benchmark itself. This
is different for the same benchmark executed on Azure (top-right subfigure).
While the per-trial and per-instance CV is also substantially larger than on
AWS, it is particularly the total CV that is now very high. This indicates,
that etcd-2 is fairly stable within a trial and among multiple trials within an
instance but becomes comparatively much more unstable when considering
executions of the benchmark across multiple instances of the same type. Fur-
ther, this indicates that the reason for the difference in stability between cloud
providers is caused by varying instance performance.

A different example is provided by the bottom-left figure, which shows
log4j2-5 on AWS CPU. Here, the inherent benchmark variability is minuscule
but there are substantial differences between different trials, largely indepen-
dently of whether these trials happen on the same instance or not. This indi-
cates that for this benchmark a large source of variability are trial-level effects,
such as different types of resource contention (e.g., CPU, memory, IO) over
the duration of its execution.

Software Microbenchmarking in the Cloud. How Bad is it Really? 19

Finally, the example on the bottom-right shows etcd-4 on GCE Mem. This
benchmark has a high total variability, which is composed of a combination
of large inherent benchmark variability and substantial performance variabil-
ity between different instances. This is the case, where all three variability
types have a similarly big fraction of the overall instability of the benchmark-
execution’s result.

Benchmark Variability: In RQ1, we studied the variability of microbenchmark
results when executed on cloud instances. The CVs for the studied benchmark-
environment configurations vary between 0.03% to 100.68%. This variability orig-
inates from three sources (variability inherent to a benchmark, between trials
on the same instance, and between different instances) and different benchmark-
environment configurations suffer to very different degrees from any of these sources.
The bare-metal instance expectedly produces very stable results, however AWS is
typically not substantially less stable. Based on these results, we conclude that GCE
and Azure seem to lend themselves much less to performance testing than AWS at
the time of study.

5 Reliably Detecting Slowdowns

To answer RQ2, we compare two standard statistical tests for evaluating
whether the performance of a software has changed. First we outline two ap-
proaches how to run performance experiments and sample data from existing
measurements, i.e., instance-based and trial-based sampling strategies. Then
we investigate how many FPs the two tests report when executing A/A tests in
the studied environments. Intuitively this gives us an indication which bench-
marks in which configurations should not be used for performance testing at
all, as they frequently indicate slowdowns even if comparing identical software
versions. Lastly, we explore the minimal-detectable slowdowns (MDSs) of all
benchmarks in all configurations with sufficiently low number of FPs during
A/A testing.

5.1 Statistical Tests

For both the A/A tests and the MDS tests (also referred to as A/B tests),
we use two standard statistical tests for evaluating whether a software’s per-
formance has changed. Literature on performance evaluation suggests usage
of two test types: (1) hypothesis testing with Wilcoxon rank-sum (sometimes
referred to as Mann-Whitney U test) combined with effect sizes (Bulej et al
2017), and (2) change-detection through testing for overlapping confidence in-
tervals of the mean (Bulej et al 2017; Georges et al 2007; Kalibera and Jones
2012, 2013). Note that Wilcoxon rank-sum is a test for difference of medians
while the confidence-interval test employed in this paper is for means.

20 Laaber et al.

5.1.1 Wilcoxon Rank-Sum

Firstly, we study the applicability of Wilcoxon rank-sum for performance-
change detection. Due to the non-normality (i.e., long-tailed or, in some cases,
multi-modal) of performance data, we choose the Wilcoxon rank-sum test be-
cause it is applicable to non-normal data. We formulate the null hypothesis
H0 as the two performance result populations (i.e., test and control group)
having the same performance (mean execution time), when both groups con-
tain performance results from the same benchmark in the same environment.
Consequently, the alternative hypothesis H1 states that the two compared per-
formance populations do not have the same performance and hence we detect
a performance change. All experiments use a 95% confidence level. That is,
we report a statistically significant performance change iff the p-value of the
Wilcoxon rank-sum is smaller or equal to 0.05 (i.e., p ≤ 0.05). Further, due to
the large number of data points, hypothesis tests might report a statistically
significant difference with low effect size. Therefore, we combine the Wilcoxon
test with a test for a minimum effect size as measured by Cliff’s Delta (Cliff
1996). We test for an effect size of “medium” (0.33) or larger, as defined in
Romano et al (2006). Similar to the usage of Wilcoxon rank-sum, we utilize
Cliff’s Delta as a measure of effect size due to its applicability to non-normal
data. We have also conducted experiments testing for a an effect size of small
or larger (|d| >= 0.147), but determined that this led to excessive FPs in most
tested configurations. Hence, we do not report on these results here. However,
the corresponding tables are part of our online appendix (Laaber et al 2019).

5.1.2 Confidence Intervals

Classic textbooks on performance analysis (Jain 1991; John and Eeckhout
2005) suggest that confidence intervals should be preferred over hypothesis
testing. Therefore, we additionally study how well slowdowns can be detected
by testing for overlapping 95% confidence intervals of the mean. We report a
difference between test and control group iff the 95% confidence intervals of
the mean of the two populations do not overlap. Due to the non-normality
of performance data, a simple computation of the confidence interval of the
mean would be invalid. To address this, we apply statistical simulation, i.e.,
bootstrapping (C. Davison and Hinkley 1997), with hierarchical random re-
sampling (Ren et al 2010) and replacement. In detail, the approach employed is
tailored for evaluating performance data and has been introduced by Kalibera
and Jones (2012, 2013). Re-sampling happens on three levels: (1) instance-
level, (2) trial-level, and (3) iteration-level. We run 100 bootstrap iterations
for each confidence interval computation. Although Kalibera and Jones (2013)
suggest to run 1000 bootstrap iterations, the additional layer of repeated sim-
ulations (100 times re-sampling of test and control group for the upcoming
A/A tests and minimal-detectable slowdowns) adds drastically to the overall
runtime, i.e., about 130 hours for A/A tests and 500 hours for detection tests.
A manual analysis of the computed confidence intervals (for the benchmark

Software Microbenchmarking in the Cloud. How Bad is it Really? 21

variabilities in Section 4) between 100 and 1000 bootstrap iterations suggested
that the gain of using 1000 bootstrap iterations is relatively small. Hesterberg
(2015) even suggests adopting 10000 bootstrap simulations as smaller numbers
might suffer from Monte Carlo variability. Admitting that individual results
might change due to the randomized nature of bootstrapping, the overall re-
sults presented in the paper are expected to remain stable. Especially because
our experiments (A/A and detection tests) sample 100 different test and con-
trol groups (see Section 3) and compute bootstrapped confidence intervals for
each of these 100 pairs with 100 bootstrap iterations, which in total reaches
the 10000 samples suggested by Hesterberg (2015). We refer to (Kalibera and
Jones 2012, p.24ff) and our online appendix (Laaber et al 2019) for details on
how the confidence interval is computed.

5.2 Sampling Strategies

We now outline two sampling strategies along the dimensions of the study
(i.e., trials and instances), which define how the test and control group of a
performance experiment can be executed.

Recall from Sections 3.3 and 4 the formal definitions of the specific mea-
surements M c

i,t of a configuration c for trial t and instance i (see Equation 1)
and the definition for all measurements of a defined configuration M c (see
Equation 4). The selection of the test and control group is then defined as
select in Equation 8.

select :
〈
M c, selinstances, seltrials

〉
7→
〈
M ′c,M ′c

〉
(8)

select takes as input the measurements of a configuration M c, the desired
number of instances selinstances to sample, and the desired number of trials
seltrials to sample. The function returns a tuple of sampled configuration re-
sults M ′c ⊂M c where the first element corresponds to the test group and the
second element to the control group. Concrete implementations of select are
the sampling strategies instance-based sampling (ibs) and trial-based sampling
(tbs), which have the same signature and are described in the following.

5.2.1 Instance-based Sampling

Instance-based sampling implements the idea of running test and control
groups on different instances. In practical terms, this emulates the situation
when a performance engineer wants to compare a new version of a system
against older performance data, which has been measured at a previous time,
for instance when the previous version was released. We assume that, between
releases, cloud instances are terminated to save costs.

Figure 6a visualizes the instance-based sampling strategy, and Equation 9
formally defines the function ibs that performs this selection. It randomly
selects (potentially) multiple different instances for each test and control group

22 Laaber et al.

Control Group
i-1

…
t-1 dp1

…
dp50

t-m dp1
…
dp50

…

i-n

…
t-1 dp1

…
dp50

t-m dp1
…
dp50

Test Group
i-1

…
t-1 dp1

…
dp50

t-m dp1
…
dp50

…

i-n

…
t-1 dp1

…
dp50

t-m dp1
…
dp50

(a) Instance-based

Control Group
i-1

…
t-1 dp1

…
dp50

t-m dp1
…
dp50

…

i-n

…
t-1 dp1

…
dp50

t-m dp1
…
dp50

Test Group
i-1

…
t-1 dp1

…
dp50

t-m dp1
…
dp50

…

i-n

…
t-1 dp1

…
dp50

t-m dp1
…
dp50

(b) Trial-based

Fig. 6: Sampling strategies. (a) Instance-based: test and control group consist
of disjoint instances (blue/green, b/w: dark/medium grey) with m trials each
(light grey). (b) Trial-based: test and control group consist of the same in-
stances (light grey), with disjoint m trials each taken from the same instances
(blue/green, b/w: dark/medium grey).

(in blue and green; selinstances) and uses random trials from each instance (in
light grey; seltrials).

ibs(M c, selinstances, seltrials) =
〈{

M c
i,t ∈M c | i ∈ ITG ∧ t ∈ rand(T#, seltrials)

}
,{

M c
i,t ∈M c | i ∈ ICG ∧ t ∈ rand(T#, seltrials)

}〉
(9)

For Equation 9 the conditions in Equation 10 hold. The first clause defines
the test group’s instances ITG of size selinstances, which are randomly selected
from I# = [1, instances] with instances being the total number of instances
(i.e., instances = 50 as defined in Section 3.3). The second clause, similar
to the first one, describes the control group’s instances ICG of size seltrials,
which have the same selection criterion as the test group’s instances. Finally,
the third clause ensures that the sets of instances for test and control group
are disjoint (i.e., that we are not using the same instances for test and control
group). Supporting the above and following equations, the function rand takes
as input an arbitrary set and a set-member counter and returns the counter’s
value of randomly selected members of the set.

ITG = rand(I#, selinstances)∧
ICG = rand(I#, selinstances)∧

ITG ∩ ICG = ∅ (10)

Software Microbenchmarking in the Cloud. How Bad is it Really? 23

5.2.2 Trial-based Sampling

Trial-based sampling implements the idea of running test and control groups
on the same instances, as opposed to instance-based sampling where they are
executed on different instances. This emulates the case where a performance
engineer starts multiple instances and then runs both, the test and control
group, potentially multiple times on the same instance in randomized order.
This minimizes the impact of the specific instance’s performance, which we
have established to be an important factor contributing to variability in many
cases. This approach can also be seen as a paired statistical test. Hence, we
expect that this approach should generally lead to fewer FPs and smaller
MDSs.

Figure 6b illustrates and Equation 11 formalizes trial-based sampling, which
randomly selects (potentially) multiple instances (selinstances) per benchmark
and environment. However, different from the instance-based strategy, the con-
trol and test group now consist of the same instances (in light grey; selinstances)
with multiple different randomly selected trials each (in blue and green; seltrials).

tbs(M c, selinstances, seltrials) =
〈{

M c
i,t ∈M c | i ∈ I ′ ∧ t ∈ TTGi

}
,{

M c
i,t ∈M c | i ∈ I ′ ∧ t ∈ TCGi

}〉
(11)

Equation 12 describes the conditions that hold for Equation 11. The first
clause defines the test and control group’s instances I ′, which are randomly
selected from I# = [1, instances] with instances being the total number of
instances (i.e., instances = 50 as defined in Section 3.3). The second clause
describes the trials selected from each instance for the test group TTGi , which
have a size of seltrials (e.g., 5), and are randomly selected for each instance i
from T# = [1, trials] with trials being the total number of trials as defined in
our methodology as trials = 10 (cf. Section 3.3). The third clause, similar to
the second one, describes the control group’s trials TCGi , which have the same
selection criterion as the test group’s trials. The forth clause ensures that the
sets of trials for test and control group are disjoint.

∀i : I ′ = rand(T#, selinstances)∧
TTGi = rand(T#, seltrials)∧
TCGi = rand(T#, seltrials)∧

TTGi ∩ TCGi = ∅ (12)

5.3 A/A Testing

In this section, we perform A/A tests of all selected benchmarks with differ-
ent sample sizes and the two sampling strategies (select). The goal of A/A

24 Laaber et al.

testing is to compare samples that, by construction, do not stem from a differ-
ently performing application (i.e., running the same benchmark in the same
environment). Thus, the goal of these tests is to validate that the experiment
environment does not report a slowdown if, by construction, a slowdown is
not possible. Following common statistical practice, we define the upper FP
threshold to be 5% and consider a specific benchmark in a specific environn-
ment to be too unreliable if it exceeds the 5% FPs threshold. That is, from
100 random tests between identical versions, we hope for 5 or less FPs.

Recall the approach from Section 3 depicted in Figure 1: we executed ev-
ery benchmark on each individual instance 10 times (trials = 10), and re-
peated these trials 50 times on different instances of the same instance type
(instances = 50). We now randomly select 1, 2, 3, 5, 10, 15, and 20 instances
(selinstances), and then randomly select 1, 2, 3, and 5 trials (seltrials) for test
and control group. As selection strategy (select) we use both instance-based
(ibs) and trial-based (tbs) sampling. For each benchmark-environment config-
uration (e.g., log4j2-1 in AWS GP), we repeat this experiment 100 times with
different randomly-sampled instances and trials for test and control groups.
To account for the increased likelihood of rejecting H0 when testing 100 times
a distinct benchmark-environment configuration with Wilcoxon rank-sum, we
apply a Bonferoni correction to the resulting p-values of the 100 test-control-
group samples.

5.3.1 Example

Table 6 shows an example of the FP-rates for bleve-3. The first four rows use
ibs whereas the last four rows use tbs. Intuitively, the table reports in percent
how often a confidence-interval test falsely reported a performance change
when neither benchmark nor code had in fact changed.

#
In

s.

#
T
ri

al
s

AWS GCE Azure BM

GP CPU Mem GP CPU Mem GP CPU Mem

ib
s

1 1 81 81 90 82 88 92 86 87 71 43
1 5 69 35 85 71 73 69 81 72 65 13

10 1 6 7 4 6 5 6 6 7 1 6
20 5 3 2 0 4 4 2 5 4 1 0

tb
s

1 1 49 67 64 67 65 65 27 41 26 38
1 5 11 13 5 6 8 10 3 6 8 2
3 1 3 2 0 4 4 5 0 2 3 8
3 5 0 0 0 1 0 0 0 0 0 5

Table 6: FP-rates in percent testing for overlapping confidence intervals for
bleve-3 for instance-based (ibs, top) and trial-based (tbs, bottom) sampling,
across all studied environments, with example configurations.

The smallest sample sizes (i.e., one instance and one trial) for both sam-
pling strategies show a high number of FPs across all environments, with the

Software Microbenchmarking in the Cloud. How Bad is it Really? 25

bare-metal one from Bluemix (column “BM”) being the “most reliable” envi-
ronment with approximately 40% FPs. Increasing the number of trials and/or
instances yields fewer FPs for both strategies. ibs does not achieve much better
results when only considering more trials but still only one instance for both
test and control group (row 2). However, increasing the number of instances
to 10 (row 3) results in less than 10% FPs for this particular benchmark. In-
creasing the sample size even further to 20 instances and 5 trials per instance,
the instance-based strategy has at most 5% FPs across all studied environ-
ments, which we consider acceptable. In comparison when running test and
control group on the same instances (tbs), already an increase to five trials
on a single instance produces much fewer FPs (row 6). A small sample size
such as three instances with five trials already reduces to FP-rate of all but
one cloud environments to 0. Interestingly, we still observe 5% FPs in the
Bluemix environment, despite a very low CV. In this particular case (i.e., for
benchmark bleve-3), the confidence intervals are extremely narrow and there-
fore already minor shifts of the mean in the control group are statistically
significant changes.

We omit detailed results for other benchmarks and the Wilcoxon rank-sum
testing because they are generally in line with the example provided above.
Full details for every benchmark, both sampling strategies, and both statistical
tests can be found in the online appendix (Laaber et al 2019).

5.3.2 Impact of Sampling Strategy

We now provide a more detailed look into the impact of the different sampling
strategies and chosen number of samples. Figure 7 shows the density plots
of FPs rates for all studied environments. The left subfigures (7a) show the
Wilcoxon rank-sum test and the right subfigures (7b) show the results for the
confidence-interval test. The first two subplots are instance-based sampling
results with one instance and one trial and ten instances and one trial respec-
tively. The lower three subplots depict trial-based sampling results with two
instances and five trials, five instances and two trials, and five instances and
five trials respectively. The blue horizontal line indicates the 5%-FP threshold,
which we consider as acceptable upper bound across the 100 simulations.

These figures make obvious that for instance-based sampling, even with
10 instances, testing using Wilcoxon leads to a large number of FPs for most
benchmark-environment configurations (intuitively, most of the area under the
curve is on the right-hand side of the 5% border). The smallest sample size
(one instance with one trial using ibs; top row) produces FP-rates > 5% for
almost all configurations and only a few are below the 5% threshold: 18/190
for Wilcoxon and 8/190 for confidence intervals. This improves when consider-
ing 10 instances with one trial and ibs (second row). Across all configurations
only 44 in 190 have 5% FPs or less, 48 have between 10% and 20%, and still
54 have more than 20% FPs when using Wilcoxon. If using only a single trial
from each instance for test and control group (e.g., if a performance engineer
were be to run the benchmarks only once for each release) the rate of reported

26 Laaber et al.

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00

D
en

si
ty

Cloud

AWS

Azure

Bluemix

GCE

1 Instance with 1 Trial (instance−based)

0

1

2

3

4

5

0.0 0.2 0.4 0.6

D
en

si
ty

10 Instances with 1 Trial (instance−based)

0

10

20

0.0 0.1 0.2 0.3

D
en

si
ty

2 Instances with 5 Trials (trial−based)

0

5

10

15

20

25

0.0 0.1 0.2 0.3

D
en

si
ty

5 Instances with 2 Trials (trial−based)

0

25

50

75

100

0.00 0.02 0.04 0.06 0.08

False Positives

D
en

si
ty

5 Instances with 5 Trials (trial−based)

(a) Wilcoxon rank-sum test

0

2

4

0.00 0.25 0.50 0.75 1.00

D
en

si
ty

Cloud

AWS

Azure

Bluemix

GCE

1 Instance with 1 Trial (instance−based)

0

5

10

15

0.00 0.05 0.10 0.15

D
en

si
ty

10 Instances with 1 Trial (instance−based)

0

25

50

75

100

0.000 0.025 0.050 0.075

D
en

si
ty

2 Instances with 5 Trials (trial−based)

0

10

20

30

40

0.00 0.05 0.10

D
en

si
ty

5 Instances with 2 Trials (trial−based)

0

50

100

150

200

250

0.00 0.02 0.04 0.06

False Positives

D
en

si
ty

5 Instances with 5 Trials (trial−based)

(b) Confidence-interval test

Fig. 7: False-positive differences between environments for Wilcoxon rank-sum
and confidence-interval tests

FPs sometimes even exceeds 50% for 4 configurations. Using overlapping con-
fidence intervals and 10 instances, the situation improves drastically (110 of
190 configurations, or close to 60%, have≤ 5% FPs), although still 80 config-
urations exhibit too many FPs. 11 configurations have a FP rate of 10% or
more, but none has 20% or more.

Changing to trial-based sampling improves the overall FP rate across all
environments. Both statistical tests show below 5% FPs for almost all config-
urations (185 of 190, or 97% with Wilcoxon, and 189 of 190 with confidence
intervals) when increasing the sample size to five instances with five trials.
Generally, confidence intervals produce slightly fewer total FPs than Wilcoxon
rank-sum. From a total of 19000 simulated tests (19 benchmarks * 10 environ-

Software Microbenchmarking in the Cloud. How Bad is it Really? 27

ments * 100 simulations), only 75 (0.4%) and 106 (0.6%) FPs where reported
when testing with confidence intervals and Wilcoxon respectively.

Comparing the different cloud providers shows interesting results. Studying
the worst case (one instance with one trial using ibs, top row) and the best case
(five instance with with trials using tbs, bottom row), we can hardly notice
any differences among the cloud providers with respect to their FP rates. For
the worst case, only 2 (Azure, Bluemix) to 3 (AWS, GCE) benchmarks have
< 5% FPs in all environments. In the best case, 0 (AWS, GCE, Azure) or 1
(Bluemix) benchmarks are not below this threshold. Counter-intuitively, we
observe that the more stable cloud environments (AWS and Bluemix, based on
results from Section 4) lead to more FPs in the other three examples (rows two,
three, and four). This is because environments with high dispersion between
individual measurements often lead to the Wilcoxon test not being able to
reject H0 as well as wide confidence intervals, which incidentally helps to
reduce the number of FPs. However, we expect that the number of accurately
identified actual slowdowns (see Section 5.4) will be low as well in the more
unstable environments. That is, these results should not be taken to mean
that an unstable environment is more useful for performance testing than a
stable one, just that a specific type of problem (namely a falsely identified
slowdown) is less likely to happen. Another interesting observation is that
the IaaS environments (AWS, GCE, and Azure), and in particular the more
unreliable environments (GCE and Azure), benefit more from employing tbs
rather than ibs. This indicates that the methodology RMIT introduced by
Abedi and Brecht (2017) can indeed be considered a best-practice.

We observe the same trends for the different projects under study. Trial-
based sampling outperforms instance-based sampling and confidence intervals
produce slightly more reliable results than Wilcoxon rank-sum tests. An inves-
tigation of the FP rate differences between instance families (i.e., GP, CPU,
Mem) was inconclusive. We did not see substantial differences between in-
stance families of the same cloud provider in the density plots, nor did an
examination of the detailed per-benchmark results reveal major differences.

5.3.3 Minimal Number of Required Samples

In the examples above, we see that an increase of samples (instances and/or
trials) as well as the sampling strategy has a direct impact on the reliability of
the obtained results, i.e., the number of wrongly reported performance changes
(FPs). Figure 8 shows the minimal number of required samples (number of
instances and trials) for the statistical tests to report below 5% FPs. For every
configuration (benchmark-environment combination), we report a single dot
that indicates the lowest sampling which has below 5% FPs. Intuitively, the
further to the bottom-left corner of each plot, the fewer samples are required to
not suffer from excessively many FPs and therefore having a sufficiently stable
environment for slowdown detection. The lowest sample number is defined by
the product of number of instances and number of trials. As this can result in
the same number of samples (e.g., one instance and five trials vs. five instances

28 Laaber et al.

and one trial), we first check more trials of the same instances, because an
increase of trials compared to an increase of instances tends to have a smaller
impact on the FP rate.

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

1

2

3

5

1 2 3 5 10 15 20

Wilcoxon test with ibs

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

1

2

3

5

1 2 3 5 10 15 20

Wilcoxon test with tbs

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

1

2

3

5

1 2 3 5 10 15 20

Confidence−interval test with ibs

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●●

1

2

3

5

1 2 3 5 10 15 20

Confidence−interval test with tbs

Project

● Log4j2

RxJava

bleve

etcd

Tr
ia

ls

Instances

Fig. 8: Minimally required samples to reach <5% false-positives. The top row
shows the Wilcoxon rank-sum test, and the bottom row depicts confidence
intervals. The left column shows instance-based and the right column shows
trial-based sampling. Note that this is a jitter plot for discrete values, therefore
all data points within one box correspond to the same value.

For both tests (Wilcoxon test in the first row and confidence-interval test
in the second row) and sampling strategies (instance-based left in the left col-
umn and trial-based in the right) one instance and one trial is sufficient only
for a small number of benchmarks. These configurations are exclusively from
the RxJava and etcd projects. For instance-based (left column), just an in-
crease in number of trials does not produce better results. The majority of the
results analyzed with Wilcoxon require repeating the measurements on 10 in-
stances or more to reach <5% FPs. A few configurations only drop below that
threshold with two or more trials for each instance. In comparison, confidence
intervals (bottom-left plot) require between five and 15 instances when us-
ing one trial. Interestingly, especially Log4j2 configurations benefit more from
an increased number of trials than the other projects when using confidence
intervals. Considering all studied benchmarks, an upper bound of minimally
required samples for ibs is 5000 (20 instances * 5 trials * 50 iterations) when

Software Microbenchmarking in the Cloud. How Bad is it Really? 29

testing with Wilcoxon and 1000 (20 instances * 1 trial * 50 iterations) when
employing the confidence-interval test.

For trial-based sampling (right column) we see a similar trend, where confi-
dence intervals require fewer instances/trials than testing with Wilcoxon. Even
more evident, Log4j2 turns out to be the project with the highest FP rate. As
expected by the design of trial-based sampling (running test and control group
on the same instances), an increase in number of trials often reduces the FP
rate. However, a surprising result is that many benchmark-environment com-
binations already yield low FP rates for a single trial on two to five instances
when testing with confidence intervals. Over all benchmarks, at most 1500
samples (10 instances * 3 trials * 50 iterations) for Wilcoxon and 750 sam-
ples (5 instances * 3 trials * 50 iterations) for the confidence-interval test are
required for a maximum of 5% FPs when employing tbs.

Our A/A testing results show that for the microbenchmarks under study
the overlapping confidence-interval test (bottom row) indeed yields better re-
sults than the Wilcoxon rank-sum test (top row). That is, less samples are
required to have similarly stable results. This result is in line with previous
scientific arguments (Jain 1991; Kalibera and Jones 2013).

A/A Testing: Identical measurements (e.g., same benchmark executed in the same
environment without any code changes) suffer from falsely-reported performance
changes when they are taken from a small number of instances and trials. Nonethe-
less, an increase in samples yields a low number of acceptable FPs (i.e., <5%)
for all studied benchmarks and environments, both sampling-strategies, and both
statistical tests. Hence, testing for performance with software microbenchmarks in
(unreliable) cloud environments is possible. However, a substantial number of ex-
periment repetitions are required, optimally executed using a trial-based strategy.
We have confirmed that testing using overlapping confidence intervals yields sub-
stantially less false positives with the same setup than using a Wilcoxon test with
medium Cliff’s delta effect size.

5.4 Minimal-Detectable Slowdown Sizes

The previous section showed that depending on the sample size (number of in-
stances and trials), we are able to utilize cloud instances for microbenchmark
execution with low FP-rates when performing A/A tests. Especially when
employing trial-based sampling (running test and control group on the same
instances), already using five instances with five trials produces results that
have below 5% FPs for most studied benchmarks and environments. Taking
a step further, we now investigate the sizes of slowdowns that are detectable
with both sampling strategies (ibs and tbs) using both studied statistical tests
(Wilcoxon rank-sum with Cliff’s Delta effect-size measure of medium or larger
and overlapping 95% confidence intervals for the mean computed using boot-
strapping).

30 Laaber et al.

5.4.1 Approach

To find the minimal-detectable slowdown (MDS), i.e., the slowdown that can
be identified in 95% of cases, with at most 5% of FPs, by a benchmark in
a particular environment, we performed experiments based on the following
procedure. For each benchmark and each instance type, we investigate a fixed
list of 11 simulated slowdowns ranging from a tiny 0.1% slowdown to a massive
one of 1000% (i.e., the respective functionality got 10 times slower). Concretely,
we experiment with the following slowdowns: 0.1%, 0.2%, 0.5%, 1%, 1.5%,
2%, 5%, 10%, 50%, 100%, 1000%. For each simulated slowdown, we use both
sampling strategies (ibs and tbs) to sample a test and control group from the
data set. We simulate a slowdown in the test group by increasing the execution
time of each data point by x% where x is the simulated slowdown size (e.g., for
a slowdown of 1%, we add 1% to each data point) and compare test and control
group with both statistical tests, i.e., Wilcoxon and confidence-interval tests.
We believe this is the most-straightforward way of injecting slowdowns that
comes with the fewest parameters to be applied correctly. Note that increasing
each data point of the test group by a fixed slowdown percentage represents an
“idealized” slowdown. As our experiments share the same data, the comparison
between the studied approaches and statistical tests remains valid, although
it might overestimate the number of detected slowdowns.

Similar to the A/A tests, for each slowdown we repeat this process 100
times by re-sampling different control and test groups and count how often we
find a statistically significant change — a true positive (TP) — either by re-
jecting H0 with the Wilcoxon test and an effect size of medium or larger, or by
non-overlapping 95% confidence intervals. Again, for the Wilcoxon rank-sum
test and every benchmark environment combination, we applied a Bonferoni
correction to the resulting p-values. If the rate of TPs is at least 95% (i.e., a
minimum of 95 in the 100 repetitions) and the rate of FPs (as identified by
the A/A tests from Section 5.3) is not higher than 5% (i.e., a maximum of 5
in the 100 repetitions), we conclude that a slowdown of this size can be found
reliably using one of the two studied statistical tests. MDS is then the smallest
slowdown from the list that can be found with this approach.

In the following, we discuss the MDSs using the instance-based (ibs) and
trial-based (tbs) strategies. Due to the runtime of our simulations, we were
not able to run the detection experiments for the same number of selected
samples as we did for the A/A tests. The runtime is especially a limiting
factor for the confidence interval simulations. We randomly sample 100 test
and control groups and for each of these groups we run a bootstrap technique
with another 100 iterations to compute the confidence intervals of the mean. In
our implementation, this simulation takes around 500 hours for all benchmarks
and environments, when executed on 8 core machines. We used a cluster of
10 instances in a private cloud in the first author’s university to execute the
experiments.

Software Microbenchmarking in the Cloud. How Bad is it Really? 31

5.4.2 Instance-based Sampling

We evaluate the instance-based sampling strategy for different sample sizes.
Concrete parameters for the sampling function ibs are
selinstances ∈ {1, 2, 3, 5, 10, 15, 20} and seltrials = 1.

Table 7 shows exemplary results for three benchmarks (i.e., log4j2-3, bleve-
3, and etcd-2) and a subset of the tested sample sizes (i.e., 10, 20 instances).
We omit smaller sample sizes from the example as they hardly detect slow-
downs reliably using ibs. We provide the full results as part of the online
appendix (Laaber et al 2019). Cell values represent the MDS in percent that
could be detected in this setup. Cells with the value “∞” (colored in red),
indicate that for the given configuration no slowdown could be detected using
our approach.

S
ta

t. Bench

#
In

s.

#
T
ri

al
s

AWS GCE Azure BM

GP CPU Mem GP CPU Mem GP CPU Mem

W
R

S
te

st

log4j2-3 10 1 ∞ ∞ 1.5 ∞ ∞ ∞ 10 ∞ ∞ ∞
log4j2-3 20 1 ∞ 2 1.5 10 ∞ 10 5 5 5 ∞
bleve-3 10 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0.2
bleve-3 20 1 0.5 1 5 ∞ 5 10 ∞ ∞ ∞ 0.2
etcd-2 10 1 1 2 5 ∞ ∞ ∞ ∞ ∞ ∞ 50
etcd-2 20 1 1.5 2 5 50 50 100 ∞ ∞ ∞ 50

C
I

te
st

log4j2-3 10 1 5 ∞ 5 50 50 50 50 10 50 10
log4j2-3 20 1 5 ∞ 5 10 10 10 10 ∞ 10 5
bleve-3 10 1 ∞ ∞ 10 ∞ 50 ∞ ∞ ∞ 50 ∞
bleve-3 20 1 2 2 5 50 50 50 10 10 10 0.2
etcd-2 10 1 5 2 5 ∞ ∞ 1000 1000 1000 1000 50
etcd-2 20 1 2 2 2 100 1000 1000 1000 1000 1000 50

Table 7: MDSs for log4j2-3, bleve-3, and etcd-2 using instance-based sampling
(ibs) with both statistical tests, Wilcoxon test (“WRS test”) and confidence-
interval test (“CI test”).

The results depict that, using ibs, a high number of samples is required
to reliably find slowdowns for many configurations (benchmark-environment
combinations). A clear trend is that benchmarks run on AWS are able to detect
smaller slowdowns as compared to GCE, Azure, and even Bluemix (BM). This
trend also applies to the other benchmarks not displayed in the example.

Although the example might suggest that some instance families (i.e., AWS
Mem) yield smaller MDS than the other instance families of the same provider,
an investigation of the full data set did not reveal substantial differences. In
the case of AWS and tested with confidence intervals, all three instance types
had roughly the same number of undetectable slowdowns over all samples
(total of 7 sample sizes * 19 benchmarks), i.e., 85 (64%; AWS GP), 89 (67%;
AWS CPU), 80 (60%; AWS Mem). In terms of MDS, the same instance types
find slowdowns of ≤ 10% in 35 (26%; AWS Std), 36 (27%; AWS CPU), and

32 Laaber et al.

41 (31%; AWS Mem) of the cases. Generally speaking, the MDS differences
between the instance types of the same provider are negligible for the tested
benchmarks and environments.

Figure 9 shows an overview histogram over all configurations using ibs for
testing with Wilcoxon (left) and confidence intervals (right). The bars indicate
how many configurations (y-axis) had a MDS of size x on the x-axis. We can
see that the majority of configurations do not find any slowdown reliably
(“Inf”). This is the case for benchmarks with A/A FPs of more than 5%, or
for benchmarks where we could not find the introduced slowdown in 95% or
more of the simulations for any slowdown size.

0

25

50

75

100

1 1.5 2 5 10 50 100 1000 Inf

Wilcoxon test with ibs

0

25

50

75

100

1 1.5 2 5 10 50 100 1000 Inf

Confidence−interval test with ibs

Instances

1

5

10

20#
B

en
ch

m
ar

ks

Minimal−detectable Slowdown [%]

Fig. 9: MDSs found with instance-based sampling (ibs) by applying the
Wilcoxon test (left) and confidence-interval test (right). The x-axis shows the
slowdowns we tested for, and the y-axis shows for how many benchmark-
environment combinations the corresponding slowdown is the smallest that is
detectable. MDSs ≤ 5% are aggregated at 1. If no slowdown is detectable, Inf
is depicted.

From the 190 configurations (19 benchmarks * 10 environments), no slow-
down could be reliably detected for 172 (91%) benchmarks-environment com-
binations with one instance, for 162 (85%) combinations with five instances,
for 146 (77%) combinations with ten instances, and 42 (22%) combinations
with 20 instances when testing with Wilcoxon. The confidence-interval test
performs slightly better. 154 (81%) combinations with one instance do not
find a slowdown of any size, 141 (74%) combinations with five instances, 71
(37%) with ten instances, and 24 (13%) with 20 instances.

When increasing the sample size to five instances, Wilcoxon finds slow-
downs in 27 (14%) configurations, out of which 17 (9%) are below 10% slow-
down size. In comparison, the confidence-interval test finds slowdowns in 40
(21%) of the studied configurations, where 18 (9%) are below 10% slowdown

Software Microbenchmarking in the Cloud. How Bad is it Really? 33

size. Doubling the sample size to ten instances has a small effect when test-
ing with Wilcoxon, i.e., 44 (23%) configurations find a slowdown reliably out
of which 34 (18%) detect slowdowns ≤ 10%. Going to ten instances has a
substantially larger impact on which slowdowns are reliably detectable when
testing with confidence intervals. 110 (58%) configurations find a slowdown
and 50 (26%) are even able to detect slowdowns ≤ 10%. With 20 instances
Wilcoxon is able to detect slowdowns in 148 (78%) configurations, and confi-
dence intervals expose slowdowns in 157 (83%) configurations; while 121 (64%)
and 95 (50%) reliably report slowdowns below 10% respectively.

These results show that instance-based sampling, i.e., the sampling strategy
where test and control group are executed on different instances, is only able
to reliably detect slowdowns (of any size) in 78% of the tested configurations
when using Wilcoxon and 83% when testing with confidence intervals, even
when utilizing a fairly large number of 20 instances.

5.4.3 Trial-based Sampling

Following the results from the instance-based MDSs, we now investigate whether
trial-based sampling (tbs) is able to detect slowdowns for smaller sample sizes.
In Section 5.3, we observed that tbs, i.e., running test and control group on the
same instances in interleaved order, results in fewer FPs with smaller sample
sizes than ibs. Based on this, we expect that tbs yields more reliable and more
stable detection results and therefore smaller MDSs.

We evaluate the trial-based sampling strategy for different sample sizes
analogous to the instance-based sampling. The parameters for the sampling
function tbs are selinstances ∈ {1, 2, 3, 5, 10, 15, 20} and seltrials = 5.

Table 8 shows the same examples as above, but now for tbs instead of
ibs. Again, all other detailed results are provided as part of the online ap-
pendix (Laaber et al 2019). The three benchmark examples provided already
give an indication that tbs indeed leads to more reliable results in terms of
slowdown detectability. Although running test and control group on a single
instance, slowdowns are reliably detectable for benchmarks bleve-3 and etcd-2
in some environments with both statistical tests (e.g., bleve-3 on Azure with
the Wilcoxon test). Similar to ibs, we see a trend that in AWS and Bluemix,
smaller slowdowns can be detected than in GCE and Azure. We again ob-
serve that AWS works even better than Bluemix for at least some benchmarks
(notably etcd-2, but this is not true universally. Regarding the differences be-
tween instance types of the same cloud provider we again observe no notable
difference. This is in line with the variability results from Section 4, which
indicate that these providers appear to be particularly useful for performance
microbenchmarking experiments.

In line with the presentation of the instance-based sampling results, we
now depict an overview of all configurations in Figure 10 as histogram. The
results confirm our intuition from the examples in Table 8. The majority of
configurations reliably find at least some slowdown when considering sam-
ple sizes bigger than one instance. Nevertheless from 190 configurations (19

34 Laaber et al.
S
ta

t. Bench

#
In

s.

#
T
ri

al
s

AWS GCE Azure BM

GP CPU Mem GP CPU Mem GP CPU Mem

W
R

S
te

st

log4j2-3 1 5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
log4j2-3 5 5 5 ∞ 1.5 10 5 10 5 5 10 1.5
log4j2-3 10 5 2 5 1.5 10 5 5 5 5 10 1.5
log4j2-3 20 5 2 5 1.5 5 5 5 5 5 10 1.5
bleve-3 1 5 ∞ ∞ ∞ ∞ ∞ ∞ 5 5 5 ∞
bleve-3 5 5 1 0.5 2 5 10 10 5 5 10 0.2
bleve-3 10 5 1 0.5 2 5 5 5 5 5 10 0.2
bleve-3 20 5 0.5 0.5 2 5 5 5 5 5 10 0.2
etcd-2 1 5 5 1.5 5 ∞ ∞ ∞ 50 50 50 50
etcd-2 5 5 2 1.5 2 100 50 100 50 50 50 50
etcd-2 10 5 2 1.5 2 50 50 50 50 50 50 50
etcd-2 20 5 1.5 1 2 50 50 50 50 50 50 50

C
I

te
st

log4j2-3 1 5 ∞ ∞ ∞ ∞ ∞ 50 50 ∞ ∞ ∞
log4j2-3 5 5 5 10 5 50 50 50 50 10 50 5
log4j2-3 10 5 10 5 5 50 10 50 50 10 10 5
log4j2-3 20 5 5 5 2 10 10 10 10 5 10 5
bleve-3 1 5 ∞ ∞ 5 ∞ ∞ ∞ 10 ∞ ∞ 1
bleve-3 5 5 5 5 10 50 50 50 50 10 50 0.2
bleve-3 10 5 2 5 50 50 50 50 10 10 10 0.2
bleve-3 20 5 2 5 10 10 10 10 10 5 10 0.2
etcd-2 1 5 5 2 5 ∞ 1000 ∞ 100 ∞ 1000 ∞
etcd-2 5 5 2 5 5 1000 1000 1000 1000 1000 1000 50
etcd-2 10 5 2 2 2 100 100 100 1000 1000 1000 50
etcd-2 20 5 2 2 2 100 100 100 1000 1000 1000 10

Table 8: MDSs for log4j2-3, bleve-3, and etcd-2 using trial-based sampling (tbs)
with both statistical tests, Wilcoxon test (“WRS test”) and confidence-interval
test (“CI test”).

benchmarks * 10 environments), still 142 (75%) with the Wilcoxon test and
117 (62%) with the confidence-interval test are not able to find any of the
slowdowns we tested for with a single instance. Increasing the sample size to
five instances (and beyond), changes the MDSs drastically for the better. Five
instances already allow finding slowdowns in 185 (97%) and 189 (99%) con-
figurations when tested with the Wilcoxon test and confidence-interval test
respectively.

Interestingly and contrary to the A/A-testing results, the Wilcoxon test
supports finding smaller MDSs. With five instances already 150 (79%) con-
figurations find slowdowns of 10% or smaller when tested with the Wilcoxon
test whereas only 74 (39%) when the confidence-interval test is applied. Sim-
ilar trends are observable for 10 instances, where 156 (82%; Wilcoxon) and
113 (60%; confidence interval), and 20 instances, where 157 (83%; Wilcoxon)
and 147 (77%; confidence interval), find a slowdown of 10% or less. 34 (17%;
Wilcoxon) and 43 (22%; confidence interval) configurations reliably detect a
slowdown of 10% or less when only using a single instance. These configura-
tions are spread across all studied environments but only include 12 unique
benchmarks from RxJava, bleve, and etcd. We observe that the Wilcoxon test
is more aggressive in rejecting H0. The leads to more FPs in the A/A tests,

Software Microbenchmarking in the Cloud. How Bad is it Really? 35

0

25

50

75

100

1 1.5 2 5 10 50 100 1000 Inf

Wilcoxon test with tbs

0

25

50

75

100

1 1.5 2 5 10 50 100 1000 Inf

Confidence−interval test with tbs

Instances

1

5

10

20#
B

en
ch

m
ar

ks

Minimal−detectable Slowdown [%]

Fig. 10: MDSs found with trial-based sampling by applying the Wilcoxon test
(left) and confidence-interval test (right). The x-axis shows the slowdowns we
tested for, and the y-axis shows for how many combinations the corresponding
slowdown is the smallest that is detectable. MDSs ≤ 5% are aggregated at 1.
If no slowdown is detectable, Inf is depicted.

but ultimately means that smaller slowdowns are correctly observed in the
present experiments.

The tbs results confirm the previous result by Abedi and Brecht (2017):
executing performance experiments on the same instances in randomized order
can indeed be considered a best practice. However, it is a surprising outcome
how small slowdowns (<10%) can often be found with high confidence even in
a comparatively unstable environment.

Minimal-Detectable Slowdowns: Our experiments re-confirm that testing in a
trial-based fashion leads to quite substantially better results than executing on dif-
ferent instances. If using instance-based sampling, a large number of instances (the
maximum of 20 in our experiments) is required, otherwise our test benchmarks are
not able to discover any regression for most benchmark-environment combinations.
However, even with 20 instances, slowdowns need to be in the range of 5% to 10% to
be reliably detectable in most cases. With trial-based sampling, already 5 instances
are sufficient to find similar slowdowns (at least when using Wilcoxon, which has
shown to be more aggressive in rejecting H0 than our alternative confidence inter-
val based approach. A small number of benchmarks in our study is able to reliably
identify small changes in performance (less than 5%), but for most combinations
such small slowdowns cannot reliably be detected in the cloud, at least not with
the maximum number of instances we tested, i.e., 20.

36 Laaber et al.

6 Discussion

In this section, we discuss the implications of this study’s results for researchers
and practitioners. First and foremost, we want to address whether cloud re-
sources can be employed to assess software performance with microbench-
marks. This has multiple aspects to it, (1) which cloud provider and instance
type is used, (2) how many measurements are taken, (3) which measurements
are considered for slowdown analysis, (4) which slowdown sizes are desired to
be detected, (5) and which statistical method to use. Following, we explicitly
address the threats to validity and limitations of our study. Lastly, we briefly
mention potential future directions of performance measurements/testing in
unstable and uncontrollable environments such as public clouds.

6.1 Implications and Main Lessons Learned

In this section we discuss implications and main lessons learned from executing
microbenchmarks in cloud environments. In detail, we comment on results for
different cloud providers and instance types, discuss the impact of sample size
and different sampling strategies on result variability, and elaborate on MDSs
of this study’s subjects when following the adopted approaches.

6.1.1 Cloud Provider and Instance Type

The reliable detection of slowdowns directly depends on the choice of cloud
provider. We have observed relevant differences between providers, and more
stable providers eventually will lead to benchmark results with lower result
variability. Based on the variability (see Section 4) and the results of our A/A
and A/B testing (see Section 5), we see an indication across all experiments
performed between July and October 2017 that benchmarks executed on AWS
produce more stable results compared to GCE and Azure. Even better results
are obtained when utilizing a bare-metal machine rented from IBM Bluemix.
Surprisingly, variability and MDS are not far apart in AWS and Bluemix. An
interesting conclusion drawn from the presented data is that there is no big dif-
ference between instance types of the same provider. When using microbench-
marks, there is no indication in our data that a particular instance-type family
should be chosen over another. Nevertheless, a reader should carefully evalu-
ate this for his/her application and microbenchmark types as this might not
hold true for other applications and benchmarks. Especially if other perfor-
mance metrics are tested for, e.g., IO throughput or memory consumption,
a difference between specialized instance types might manifest. AWS recently
introduced bare-metal instances10 as well, but this new instance type has only
become available after concluding data gathering for the current study. We

10 https://aws.amazon.com/de/blogs/aws/new-amazon-ec2-bare-metal-instances-
with-direct-access-to-hardware/

https://aws.amazon.com/de/blogs/aws/new-amazon-ec2-bare-metal-instances-with-direct-access-to-hardware/
https://aws.amazon.com/de/blogs/aws/new-amazon-ec2-bare-metal-instances-with-direct-access-to-hardware/

Software Microbenchmarking in the Cloud. How Bad is it Really? 37

expect performance to be comparable to IBM’s bare-metal offering. However,
a detailed comparison is subject to future research.

6.1.2 Measurement Strategy

Both instance-based and trial-based sampling come with their own advantages
and disadvantages. From a purely statistical point of view, the trial-based
strategy leads to substantially better slowdown detection results. However, we
argue that there is still room for the instance-based strategy, as it inherently
lends itself better to typical continuous software development scenarios. The
instance-based strategy can be implemented easily, but requires substantially
higher sample sizes. One advantage which, to some extend, alleviates the prob-
lem of large sample size is that this strategy supports parallelization of test
executions nicely. That is, in a public cloud, the only real factor preventing an
experimenter from launching an experiment on hundreds of instances in par-
allel are costs. A disadvantage of instance-based sampling is that results need
to be persisted such that a comparison is possible as soon as the new version’s
performance-test results are available. A more pressing issue is that you can
not be sure that the cloud instances have not been upgraded by the provider
between test executions of two versions. Therefore a comparison between two
versions run at different points in time might not be fair and a potentially de-
tected slowdown could be caused by a change to the underlying system. These
problems are alleviated by implementing trial-based sampling. However, if the
time budget is constrained (e.g., 2 hours per build job on TravisCI), one can
only run half of the performance tests compared to instance-based sampling.
Nonetheless if detecting the smallest-possible slowdowns is the primary goal,
employing trial-based sampling — running test and control group on the same
instances, ideally in randomized order — is preferable.

6.1.3 Required Number of Measurements

The result variability as well as the MDS is directly affected by the number of
repeated benchmark executions. A naive suggestion would be to run as many
as possible, which is at odds with temporal and monetary constraints. With
the “limitless” availability of cloud instances, performance tests of a new soft-
ware version can be executed in parallel. Even long-running benchmark suites
could be split into subsets and run in parallel in order to reduce overall ex-
ecution time. The only sequential operation are the number of trials on the
same instance. Unfortunately, there is no generalizable rule for how many mea-
surements are required to reliably detect slowdowns, as it depends on project,
benchmark, and cloud configuration. Nevertheless our results show that for
finding slowdowns of 10% or less, the number of repeated measurements has
to include 20 instances with five trials each to be sure to catch slowdowns of
this size even for less stable benchmarks. Our results also show that a few
benchmarks (e.g., rxjava-1) are extremely stable even if only one instance per

38 Laaber et al.

test and control group is used. A tool chain utilizing cloud instances for per-
formance testing, e.g., as part of a continuous integration (CI) build, should
track benchmark-result variabilities and if needed reconfigure the repeated
executions required to find small slowdowns for each benchmark individually.

6.1.4 Minimal-Detectable Slowdown Size

The minimal slowdown size we target to reliably detect directly influences
the performance-testing-environment configuration. If it is sufficient to have
a sanity check whether the performance of a software has not plummeted, an
instance-based strategy with 20 instances and a single trial might be sufficient
for most benchmarks. With this configuration some benchmarks will still be
able to find relatively small slowdowns but others would only detect changes in
the order of 100% or more. However, if slowdowns below 10% are desired to be
detected — which is often the case for software-performance changes (Mytkow-
icz et al 2009) — a trial-based strategy with at least 20 instances and 5 trials
is required for most of the studied benchmarks. Even with extensive testing
on multiple instances, it is not guaranteed that all benchmarks of a project
will reliably detect slowdowns of a certain size. We have observed multiple
benchmarks, most evidently log4j2-5, that are inherently not able to detect
realistic slowdowns in our setting. We argue that there is a need for developer
tooling which supports developers in writing good benchmarks that are able to
detect small slowdowns. It is a prerequisite to start from a stable benchmark
in an ideal environment which can than be executed on cloud environments. If
the benchmark is already inherently instable, moving to cloud-based execution
will only make matters worse. For IO-intensive benchmarks, like most of the
ones from log4j2, the transition to cloud infrastructure is troublesome as IO is
particularly unreliable.

In any case, researchers as well as practitioners are encouraged to follow
a similar approach to ours when executing performance experiments in cloud
environments. That is, always perform A/A testing to validate whether the
detected changes between different versions are due to software-performance
changes or unreliable environments.

6.1.5 Testing Using Wilcoxon vs. Overlapping Confidence Intervals

Although both statistical tests are state-of-the-art in performance evalua-
tion (Bulej et al 2017), traditional text books (Jain 1991) and research (Georges
et al 2007; Kalibera and Jones 2012, 2013) tend to prefer confidence intervals
of the mean over hypothesis testing (in form of Wilcoxon rank-sum). Our
results show that for both testing approaches (A/A in Section 5 and A/B
tests 5.4), Wilcoxon rank-sum reports more changes compared to overlapping
confidence intervals. This implies that Wilcoxon is more sensitive towards
changes and computed confidence intervals are more conservative. One ad-
vantage of Wilcoxon is that this test is computationally cheaper to run, as

Software Microbenchmarking in the Cloud. How Bad is it Really? 39

the bootstrapping required for long-tailed performance data is fairly expen-
sive. Which test is more recommendable for practitioners depends largely on
whether the expensive bootstrapping is problematic, and whether false posi-
tives (i.e., false warnings about non-existent slowdowns) are worse than false
negatives (i.e., missed slowdowns). However, it should be noted that both
statistical tests can also be customized to be more or less conservative. For
instance, one can easily imagine to test for a lower p-value or larger effect sizes
in Wilcoxon.

6.2 Threats to Validity and Future Directions

As with any empirical study, there are experiment design trade-offs, threats,
and limitations to the validity of our results to consider.

6.2.1 Threats to Internal and Construct Validity

Experiments in a public cloud always need to consider that the cloud provider
is, for all practical purposes, a black box that we cannot control. Although
reasonable model assumptions can be made (e.g., based on common sense,
previous literature, and information published by the providers), we can fun-
damentally only speculate about the reasons for any variability we observe.
Another concern that is sometimes raised for cloud experimentation is that
the cloud provider may in theory actively impact the scientific experiment, for
instance by providing more stable instances to benchmarking initiatives than
they would do in production. However, in practice, such concerns are gener-
ally unfounded. Major cloud providers operate large data centers on which
our small-scale experiments are expected to have a neglectable impact and
historically, providers have not shown interest to directly interfere with scien-
tific experiments. For the present study, we investigated entry-level instance
types only. A follow-up study is required to investigate whether variability
and detectability results improve for superior cloud hardware. Note that the
compute-optimized instance of GCE has considerably lower memory (1.8GB
vs. 3.6GB vs. 4GB) compared to the compute-optimized instance types of AWS
and Azure. Hence a direct comparison between these instance types might not
be valid. Another threat to the internal validity of our study is that we have
chosen to run all experiments in a relatively short time frame. This was due to
avoid bias from changes in the performance of a cloud provider (e.g., through
hardware updates). This decision means that our study only reports on a spe-
cific snapshot and not on longitudinal data as would be observed by a company
using the cloud for performance testing over a period of years. Another threat
is concerned with the simulated slowdowns where each data point of the test
group is increased by a fixed slowdown percentage, which represents an “ide-
alized” situation. Nevertheless our comparison of results between approaches
and statistical tests remain valid as they share the same data.

40 Laaber et al.

6.2.2 Threats to External Validity

We have only investigated microbenchmarking in Java and Go for a selected
sample of benchmarks in two OSS projects. Other programming language
paradigms (e.g., functional) and purely interpreted languages were consid-
ered out of scope. Nevertheless, we believe that with Java (dynamically com-
piled) and Go (statically compiled) we cover two of the most-used language-
compilation/execution types. In addition, the availability of projects with mi-
crobenchmark suites limits the language options to study. In terms of perfor-
mance testing paradigms, we do not claim that software microbenchmarking
is a replacement for traditional load testing. A comparison between these two
is not the goal of the underlying study but should be investigated in future
research. Further, we have focused on three, albeit well-known, public cloud
providers and a single bare-metal hosting provider. A reader should carefully
evaluate whether our results can be generalized to other languages, projects,
and cloud providers. Even more so, our results should not be generalized to
performance testing in a private cloud, as many of the phenomena that underlie
our results (e.g., noisy neighbors, hardware heterogeneity) cannot necessarily,
or not to the same extent, be observed in a private cloud. Similarly, we are
not able to make claims regarding the generalizability of our results to other
types of performance experiments, such as stress or load tests. In this work,
we focused on mean (by using bootstrapped overlapping confidence intervals)
and median (by applying Wilcoxon rank-sum) execution-time performance.
Future work should investigate other performance metrics (e.g., memory con-
sumption, IO operations, or lock contention), as well as explore best/worst-
case performance characteristics of microbenchmark suites. Finally, readers
need to keep in mind that any performance benchmarking study run on cloud
infrastructure is fundamentally aiming at a moving target. As long as virtu-
alization, multi-tenancy, or control over hardware optimizations is managed
by providers, we expect the fundamental results and implications of our work
to be stable. Nevertheless, detailed concrete results (e.g., detectable slowdown
sizes on particular provider/instance types) may become outdated as providers
update their hardware or introduce new offerings.

6.3 Future Directions

So far, we studied how bad performance testing is in cloud environments and
whether we are able to reliably detect slowdowns. This is a first step towards
utilizing cloud infrastructure for performance measurements/testing, but nat-
urally it is not the end of the story. Future research in this area should par-
ticularly address supporting developers in creating and executing performance
tests on cloud infrastructure. Two concrete topics we envision are (1) studying
the properties of benchmarks that contribute to better or worse stability and
therefore slowdown detectability in uncontrolled environments and (2) sup-
porting developers in writing appropriate benchmarks for execution in these.

Software Microbenchmarking in the Cloud. How Bad is it Really? 41

The properties to study are root causes that contribute to higher variabil-
ity in cloud environments (e.g., writing to files, network access, or execution
configuration of benchmarks). We then foresee great potential for better tool-
ing that (a) supports developers through IDE extensions to write adequate
benchmarks (e.g., compiler optimizations that invalidate benchmark results)
and hint which kind of properties might lead to higher result variability and
(b) suggests/adapts execution configuration (i.e., repetitions along trials and
instances) for a given cloud-resource type through continuous monitoring of
benchmark result variability of prior executions.

7 Related Work

Software performance is a cross-cutting concern affected by many parts of a
system and therefore hard to understand and study. Two general approaches
to software performance engineering (SPE) are prevalent: measurement-based
SPE, which executes performance experiments and monitors and evaluates
their results, and model-based SPE, which predicts performance characteristics
based on the created models (Woodside et al 2007). In this paper, we focus on
measurement-based SPE.

It has been extensively studied that measuring correctly and applying the
right statistical analyses is hard and much can be done wrong. Mytkowicz
et al (2009) pinpoint that many systems researchers have drawn wrong con-
clusions through measurement bias. Others report on wrongly quantified ex-
perimental evaluations by ignoring uncertainty of measurements through non-
deterministic behavior of software systems, such as memory placement or dy-
namic compilation (Kalibera and Jones 2012). Dealing with non-deterministic
behavior of dynamically optimized programming languages, Georges et al
(2007) summarize methodologies to measure languages such as Java, which
dynamically compile and run on VMs. Moreover, they explain which statis-
tical methods lend themselves for performance evaluation of these languages.
All of these studies expect an as-stable-as-possible environment to run per-
formance experiments on. More recently, Arif et al (2017) study the effect
of virtual environments on load tests. They find that there is a discrepancy
between physical and virtual environments, which are most strongly affected
by unpredictability of IO performance. Our paper augments this study, which
looks at result unreliability of load tests, whereas we investigate software mi-
crobenchmarks. Additionally, our study differs by conducting measurements in
cloud environments rather than virtual environments on controlled hardware.

Traditionally, performance testing research was conducted in the context
of system-scale load and stress testing (Menascé 2002; Jiang and Hassan 2015;
Weyuker and Vokolos 2000; Barna et al 2011). By now, such performance tests
are academically well-understood, and recent research focuses on industrial
applicability (Nguyen et al 2014; Foo et al 2015) or on how to reduce the
time necessary for load testing (Grechanik et al 2012). Studies of software
microbenchmarking have not received main stream attention previously, but

42 Laaber et al.

academics have recently started investigating it (Stefan et al 2017; Horky et al
2015; Chen and Shang 2017). Similarly, Leitner and Bezemer (2017) recently
investigated different practices of microbenchmarking of OSS written in Java.
However, none of these studies report on the reliability of detecting slowdowns.

A substantial body of research has investigated the performance and stabil-
ity of performance of cloud providers independently of software-performance-
engineering experiments. Iosup et al (2011) evaluate the usability of IaaS
clouds for scientific computing. Gillam et al (2013) focus on a fair comparison
of providers in their work. Ou et al (2012) and Farley et al (2012) specifically
focus on hardware heterogeneity, and how it can be exploited to improve a
tenant’s cloud experience. Our study sets a different focus on software per-
formance tests and goes a step further to investigate which slowdowns can be
detected.

7.1 Comparison to Our Previous Work

In this section, we compare the results of the work presented here to our two
previous papers that investigated performance of cloud instances. In Leitner
and Cito (2016), we studied the performance characteristics of cloud environ-
ments across multiple providers, regions, and instance types. We assessed the
stability of four public cloud providers (the same as in the current work) using
low-level, domain-independent CPU and IO system benchmarks (e.g., calcu-
lating a series of prime numbers, or writing and reading big files to/from hard
disk), using a methodology not unlike previous benchmarking works (Iosup
et al 2011; Gillam et al 2013). This paper laid the groundwork for the presently
presented research, but findings from these isolated, domain-independent tests
are not easy to transfer to any concrete usage domain, such as performance
benchmarking.

In Laaber and Leitner (2018), we studied the quality of open-source perfor-
mance test suites. Similarly to the present work, we measured the variability
of performance tests in different environments, but the ultimate goal was to
study benchmark test coverage. Hence, we were unable to go deeper in this
topic. This has brought us to the idea to conduct a more targeted study, which
ultimately led to the present work, which can be seen as applying a rigorous
cloud-benchmarking methodology, similar to Leitner and Cito (2016), to the
study of microbenchmarking-based performance tests.

It should be noted that the detailed results between these two previous
works and the present one differ in some aspects. Most importantly, AWS has
been benchmarked to be fairly unreliable in Leitner and Cito (2016), while
the results of the present study show surprisingly stable results for the same
provider. While such results may seem inconsistent, they are unavoidable in
practice. Cloud providers routinely buy new hardware, roll out different server
management policies, and offer entirely new and different services. Hence, one
should not read the outcomes of a cloud benchmarking study as a set-in-stone
truth. Rather, the goal is to identify common themes, trends, and benchmark-

Software Microbenchmarking in the Cloud. How Bad is it Really? 43

ing methodologies, which remain valid significantly longer than the detailed
data. Similarly, some microbenchmarks that have been identified in Laaber and
Leitner (2018) as particularly stable have proven much less so in the present
study (e.g., log4j-1, which we explicitly selected as a stable benchmark, but
which has proven to be highly unstable in the present study). This primarily
underlines how important a larger study of the subject, as presented here, is.

8 Conclusions

This paper empirically studied “how bad” performance testing with software
microbenchmarks in cloud environments actually is. By executing microbench-
mark suites of two Java projects (Log4j2 and RxJava) and two Go projects
(bleve and etcd) in bare-metal and cloud environments, we studied result vari-
ability, investigated falsely-detected performance changes (A/A tests), and
identified minimal-detectable slowdown sizes. The results of the A/A tests and
minimal-detectable slowdown sizes were retrieved by applying two state-of-the
art statistical tests, namely Wilcoxon rank-sum and overlapping bootstrapped
confidence intervals of the mean.

We found result variabilities of the studied benchmark-environment con-
figurations ranging between 0.03% to 100.68%, with the bare-metal and envi-
ronment and AWS delivering the best results. In terms of falsely detect per-
formance changes, the A/A test results show experiments with small sample
sizes (e.g., one instance and one trial) suffer drastically from high false-positive
rates, irrespective of which statistical test, sampling strategy, and execution
environment is used. With increased sample sizes (e.g., five instance and five
trials) though, most benchmark-environment combinations show acceptable
numbers of false positives (≤ 5%) when repeatedly executed, hence making
it feasible to use cloud instances as performance-test execution environment.
With regards to minimal-detectable slowdowns (MDSs), executing test and
control group on the same instances (trial-based sampling) enables finding
slowdowns with high confidence in all benchmark-environment combinations
when utilizing ≥ 10 instances. In 77 – 83% of the time, a slowdown below 10%
is reliably detectable when using trial-based sampling and 20 instances. We
further found that Wilcoxon rank-sum is superior to overlapping confidence
intervals in two regards: (1) it detects smaller slowdowns reliably and (2) it is
not as computational-intensive and therefore takes less time.

Following these findings, we conclude that executing software microbench-
marking experiments is, to some degree, possible on cloud instances. Not all
cloud providers and instance types perform equally well in terms of detectable
slowdowns. However in most settings, a substantial number of trials or in-
stances and the co-location of test and control group on the same instances
is required to achieve robust results with small detectable slowdowns. Prac-
titioners can use our study as a blueprint to evaluate the stability of their
own performance microbenchmarks within their custom experimental envi-
ronment.

44 Laaber et al.

Acknowledgements We are grateful for the anonymous reviewers’ feedback, which helped
to significantly improve this paper’s quality. The research leading to these results has received
funding from the Swiss National Science Foundation (SNF) under project MINCA – Models
to Increase the Cost Awareness of Cloud Developers (no. 165546), the Wallenberg AI and
Autonomous Systems and Software Program (WASP) funded by Knut and Alice Wallenberg
Foundation, and Chalmer’s ICT Area of Advance.

References

Abedi A, Brecht T (2017) Conducting repeatable experiments in highly variable cloud com-
puting environments. In: Proceedings of the 8th ACM/SPEC on International Confer-
ence on Performance Engineering, ACM, New York, NY, USA, ICPE ’17, pp 287–292,
DOI 10.1145/3030207.3030229, URL http://doi.acm.org/10.1145/3030207.3030229

Arif MM, Shang W, Shihab E (2017) Empirical study on the discrepancy between perfor-
mance testing results from virtual and physical environments. Empirical Software Engi-
neering DOI 10.1007/s10664-017-9553-x, URL https://doi.org/10.1007/s10664-017-
9553-x

Barna C, Litoiu M, Ghanbari H (2011) Autonomic Load-testing Framework. In: Proceedings
of the 8th ACM International Conference on Autonomic Computing, ACM, New York,
NY, USA, ICAC ’11, pp 91–100, DOI 10.1145/1998582.1998598, URL http://doi.acm.
org/10.1145/1998582.1998598

Bulej L, Horký V, Tůma P (2017) Do we teach useful statistics for performance evaluation?
In: Proceedings of the 8th ACM/SPEC on International Conference on Performance
Engineering Companion, ACM, New York, NY, USA, ICPE ’17 Companion, pp 185–189,
DOI 10.1145/3053600.3053638, URL http://doi.acm.org/10.1145/3053600.3053638

C Davison A, Hinkley D (1997) Bootstrap methods and their application 94
Chen J, Shang W (2017) An Exploratory Study of Performance Regression Introducing Code

Changes. In: Proceedings of the 33rd International Conference on Software Maintenance
and Evolution, New York, NY, USA, ICSME ’17

Cito J, Leitner P, Fritz T, Gall HC (2015) The making of cloud applications: An empir-
ical study on software development for the cloud. In: Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, ACM, New York, NY, USA,
ESEC/FSE 2015, pp 393–403, DOI 10.1145/2786805.2786826, URL http://doi.acm.
org/10.1145/2786805.2786826

Cliff N (1996) Ordinal Methods for Behavioral Data Analysis, 1st edn. Psychology Press
Farley B, Juels A, Varadarajan V, Ristenpart T, Bowers KD, Swift MM (2012) More for

your money: Exploiting performance heterogeneity in public clouds. In: Proceedings of
the Third ACM Symposium on Cloud Computing, ACM, New York, NY, USA, SoCC
’12, pp 20:1–20:14, DOI 10.1145/2391229.2391249, URL http://doi.acm.org/10.1145/
2391229.2391249

Foo KC, Jiang ZMJ, Adams B, Hassan AE, Zou Y, Flora P (2015) An Industrial Case
Study on the Automated Detection of Performance Regressions in Heterogeneous En-
vironments. In: Proceedings of the 37th International Conference on Software Engi-
neering - Volume 2, IEEE Press, Piscataway, NJ, USA, ICSE ’15, pp 159–168, URL
http://dl.acm.org/citation.cfm?id=2819009.2819034

Georges A, Buytaert D, Eeckhout L (2007) Statistically Rigorous Java Performance Eval-
uation. In: Proceedings of the 22Nd Annual ACM SIGPLAN Conference on Object-
oriented Programming Systems and Applications, ACM, New York, NY, USA, OOP-
SLA ’07, pp 57–76, DOI 10.1145/1297027.1297033, URL http://doi.acm.org/10.1145/
1297027.1297033

Gillam L, Li B, O’Loughlin J, Tomar APS (2013) Fair Benchmarking for Cloud Computing
Systems. Journal of Cloud Computing: Advances, Systems and Applications 2(1):6,
DOI 10.1186/2192-113X-2-6, URL http://dx.doi.org/10.1186/2192-113X-2-6

Grechanik M, Fu C, Xie Q (2012) Automatically Finding Performance Problems with
Feedback-Directed Learning Software Testing. In: Proceedings of the 34th International

http://doi.acm.org/10.1145/3030207.3030229
https://doi.org/10.1007/s10664-017-9553-x
https://doi.org/10.1007/s10664-017-9553-x
http://doi.acm.org/10.1145/1998582.1998598
http://doi.acm.org/10.1145/1998582.1998598
http://doi.acm.org/10.1145/3053600.3053638
http://doi.acm.org/10.1145/2786805.2786826
http://doi.acm.org/10.1145/2786805.2786826
http://doi.acm.org/10.1145/2391229.2391249
http://doi.acm.org/10.1145/2391229.2391249
http://dl.acm.org/citation.cfm?id=2819009.2819034
http://doi.acm.org/10.1145/1297027.1297033
http://doi.acm.org/10.1145/1297027.1297033
http://dx.doi.org/10.1186/2192-113X-2-6

Software Microbenchmarking in the Cloud. How Bad is it Really? 45

Conference on Software Engineering, IEEE Press, Piscataway, NJ, USA, ICSE ’12, pp
156–166, URL http://dl.acm.org/citation.cfm?id=2337223.2337242

Hesterberg TC (2015) What teachers should know about the bootstrap: Resampling in
the undergraduate statistics curriculum. The American Statistician 69(4):371–386,
DOI 10.1080/00031305.2015.1089789, URL https://doi.org/10.1080/00031305.2015.
1089789, pMID: 27019512, https://doi.org/10.1080/00031305.2015.1089789

Horky V, Libic P, Marek L, Steinhauser A, Tuma P (2015) Utilizing performance unit tests to
increase performance awareness. In: Proceedings of the 6th ACM/SPEC International
Conference on Performance Engineering, ACM, New York, NY, USA, ICPE ’15, pp
289–300, DOI 10.1145/2668930.2688051, URL http://doi.acm.org/10.1145/2668930.
2688051

Iosup A, Yigitbasi N, Epema D (2011) On the performance variability of production cloud
services. In: Proceedings of the 2011 11th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, IEEE Computer Society, Washington, DC, USA,
CCGRID ’11, pp 104–113, DOI 10.1109/CCGrid.2011.22, URL http://dx.doi.org/10.
1109/CCGrid.2011.22

Jain R (1991) The Art of Computer Systems Performance Analysis. Wiley
Jiang ZM, Hassan AE (2015) A Survey on Load Testing of Large-Scale Software Systems.

IEEE Transactions on Software Engineering 41(11):1091–1118, DOI 10.1109/TSE.2015.
2445340

John LK, Eeckhout L (2005) Performance Evaluation and Benchmarking, 1st edn. CRC
Press

Kalibera T, Jones R (2012) Quantifying performance changes with effect size confidence
intervals. Technical Report 4–12, University of Kent, URL http://www.cs.kent.ac.uk/
pubs/2012/3233

Kalibera T, Jones R (2013) Rigorous benchmarking in reasonable time. In: Proceedings
of the 2013 International Symposium on Memory Management, ACM, New York, NY,
USA, ISMM ’13, pp 63–74, DOI 10.1145/2464157.2464160, URL http://doi.acm.org/
10.1145/2464157.2464160

Laaber C, Leitner P (2018) An evaluation of open-source software microbenchmark suites
for continuous performance assessment. In: MSR ’18: 15th International Conference
on Mining Software Repositories, ACM, New York, NY, USA, DOI 10.1145/3196398.
3196407, URL https://doi.org/10.1145/3196398.3196407

Laaber C, Scheuner J, Leitner P (2019) Dataset, scripts, and online appendix "software mi-
crobenchmarking in the cloud. how bad is it really?". DOI 10.6084/m9.figshare.7546703,
URL https://doi.org/10.6084/m9.figshare.7546703

Leitner P, Bezemer CP (2017) An Exploratory Study of the State of Practice of Performance
Testing in Java-Based Open Source Projects. In: Proceedings of the 8th ACM/SPEC
on International Conference on Performance Engineering, ACM, New York, NY, USA,
ICPE ’17, pp 373–384, DOI 10.1145/3030207.3030213, URL http://doi.acm.org/10.
1145/3030207.3030213

Leitner P, Cito J (2016) Patterns in the chaos—a study of performance variation
and predictability in public iaas clouds. ACM Trans Internet Technol 16(3):15:1–15:23,
DOI 10.1145/2885497, URL http://doi.acm.org/10.1145/2885497

Mell P, Grance T (2011) The nist definition of cloud computing. Tech. Rep. 800-145, National
Institute of Standards and Technology (NIST), Gaithersburg, MD

Menascé DA (2002) Load Testing of Web Sites. IEEE Internet Computing 6(4):70–74, DOI
10.1109/MIC.2002.1020328, URL http://dx.doi.org/10.1109/MIC.2002.1020328

Mytkowicz T, Diwan A, Hauswirth M, Sweeney PF (2009) Producing wrong data without
doing anything obviously wrong! In: Proceedings of the 14th International Conference
on Architectural Support for Programming Languages and Operating Systems, ACM,
New York, NY, USA, ASPLOS XIV, pp 265–276, DOI 10.1145/1508244.1508275, URL
http://doi.acm.org/10.1145/1508244.1508275

Nguyen THD, Nagappan M, Hassan AE, Nasser M, Flora P (2014) An Industrial Case
Study of Automatically Identifying Performance Regression-Causes. In: Proceedings of
the 11th Working Conference on Mining Software Repositories, ACM, New York, NY,
USA, MSR 2014, pp 232–241, DOI 10.1145/2597073.2597092, URL http://doi.acm.
org/10.1145/2597073.2597092

http://dl.acm.org/citation.cfm?id=2337223.2337242
https://doi.org/10.1080/00031305.2015.1089789
https://doi.org/10.1080/00031305.2015.1089789
https://doi.org/10.1080/00031305.2015.1089789
http://doi.acm.org/10.1145/2668930.2688051
http://doi.acm.org/10.1145/2668930.2688051
http://dx.doi.org/10.1109/CCGrid.2011.22
http://dx.doi.org/10.1109/CCGrid.2011.22
http://www.cs.kent.ac.uk/pubs/2012/3233
http://www.cs.kent.ac.uk/pubs/2012/3233
http://doi.acm.org/10.1145/2464157.2464160
http://doi.acm.org/10.1145/2464157.2464160
https://doi.org/10.1145/3196398.3196407
https://doi.org/10.6084/m9.figshare.7546703
http://doi.acm.org/10.1145/3030207.3030213
http://doi.acm.org/10.1145/3030207.3030213
http://doi.acm.org/10.1145/2885497
http://dx.doi.org/10.1109/MIC.2002.1020328
http://doi.acm.org/10.1145/1508244.1508275
http://doi.acm.org/10.1145/2597073.2597092
http://doi.acm.org/10.1145/2597073.2597092

46 Laaber et al.

Ou Z, Zhuang H, Nurminen JK, Ylä-Jääski A, Hui P (2012) Exploiting hardware het-
erogeneity within the same instance type of amazon ec2. In: Proceedings of the 4th
USENIX Conference on Hot Topics in Cloud Ccomputing (HotCloud’12), USENIX
Association, Berkeley, CA, USA, pp 4–4, URL http://dl.acm.org/citation.cfm?id=
2342763.2342767

Ren S, Lai H, Tong W, Aminzadeh M, Hou X, Lai S (2010) Nonparametric bootstrap-
ping for hierarchical data. Journal of Applied Statistics 37(9):1487–1498, DOI 10.
1080/02664760903046102, URL https://doi.org/10.1080/02664760903046102, https:
//doi.org/10.1080/02664760903046102

Romano J, Kromrey J, Coraggio J, Skowronek J (2006) Appropriate statistics for ordinal
level data: Should we really be using t-test and Cohen’sd for evaluating group differences
on the NSSE and other surveys? In: Annual Meeting of the Florida Association of
Institutional Research, pp 1–3

Scheuner J, Leitner P, Cito J, Gall H (2014) Cloud work bench – infrastructure-as-code based
cloud benchmarking. In: Proceedings of the 2014 IEEE 6th International Conference
on Cloud Computing Technology and Science, IEEE Computer Society, Washington,
DC, USA, CLOUDCOM ’14, pp 246–253, DOI 10.1109/CloudCom.2014.98, URL http:
//dx.doi.org/10.1109/CloudCom.2014.98

Stefan P, Horky V, Bulej L, Tuma P (2017) Unit testing performance in java projects: Are
we there yet? In: Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering, ACM, New York, NY, USA, ICPE ’17, pp 401–412, DOI
10.1145/3030207.3030226, URL http://doi.acm.org/10.1145/3030207.3030226

Weyuker EJ, Vokolos FI (2000) Experience with Performance Testing of Software Sys-
tems: Issues, an Approach, and Case Study. IEEE Transactions on Software Engineer-
ing 26(12):1147–1156, DOI 10.1109/32.888628, URL http://dx.doi.org/10.1109/32.
888628

Woodside M, Franks G, Petriu DC (2007) The future of software performance engineering.
In: 2007 Future of Software Engineering, IEEE Computer Society, Washington, DC,
USA, FOSE ’07, pp 171–187, DOI 10.1109/FOSE.2007.32, URL http://dx.doi.org/
10.1109/FOSE.2007.32

http://dl.acm.org/citation.cfm?id=2342763.2342767
http://dl.acm.org/citation.cfm?id=2342763.2342767
https://doi.org/10.1080/02664760903046102
https://doi.org/10.1080/02664760903046102
https://doi.org/10.1080/02664760903046102
http://dx.doi.org/10.1109/CloudCom.2014.98
http://dx.doi.org/10.1109/CloudCom.2014.98
http://doi.acm.org/10.1145/3030207.3030226
http://dx.doi.org/10.1109/32.888628
http://dx.doi.org/10.1109/32.888628
http://dx.doi.org/10.1109/FOSE.2007.32
http://dx.doi.org/10.1109/FOSE.2007.32

	Introduction
	Background
	Approach
	Benchmark Variability in the Cloud
	Reliably Detecting Slowdowns
	Discussion
	Related Work
	Conclusions

