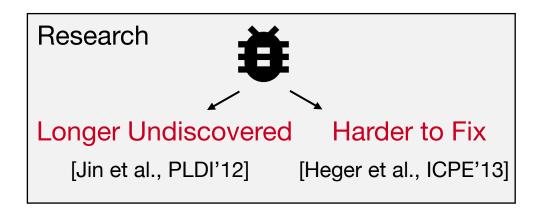
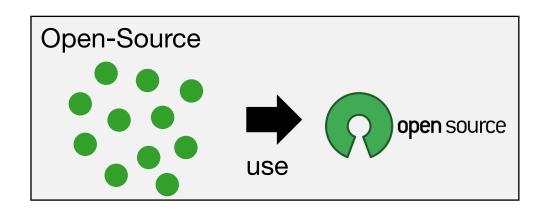


Software Microbenchmarking in the Cloud. How Bad is it Really?

Christoph Laaber, Joel Scheuner, Philipp Leitner published in Empirical Software Engineering 24(4)


34th IEEE/ACM International Conference on Automated Software Engineering (ASE' 19), November 11 – 15, 2019, San Diego, CA, USA


@ChristophLaaber

http://t.uzh.ch/T4

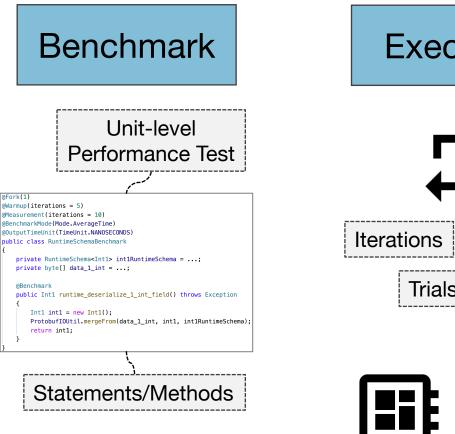
 \Box

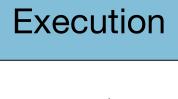
Why Software Performance Matters!

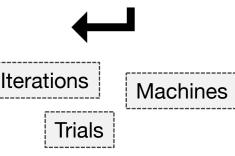
One Potential Solution

Benchmark

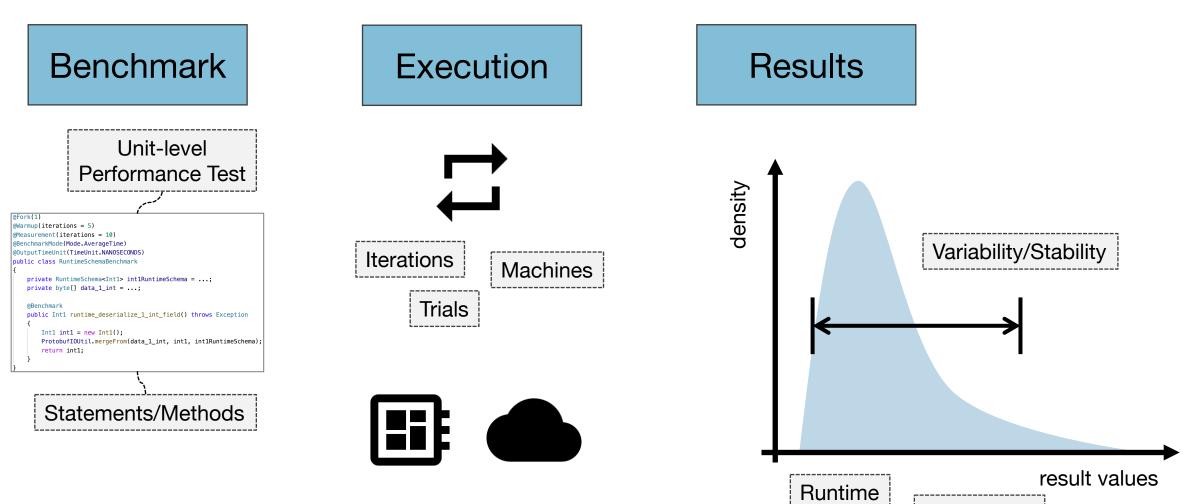
Performance Test

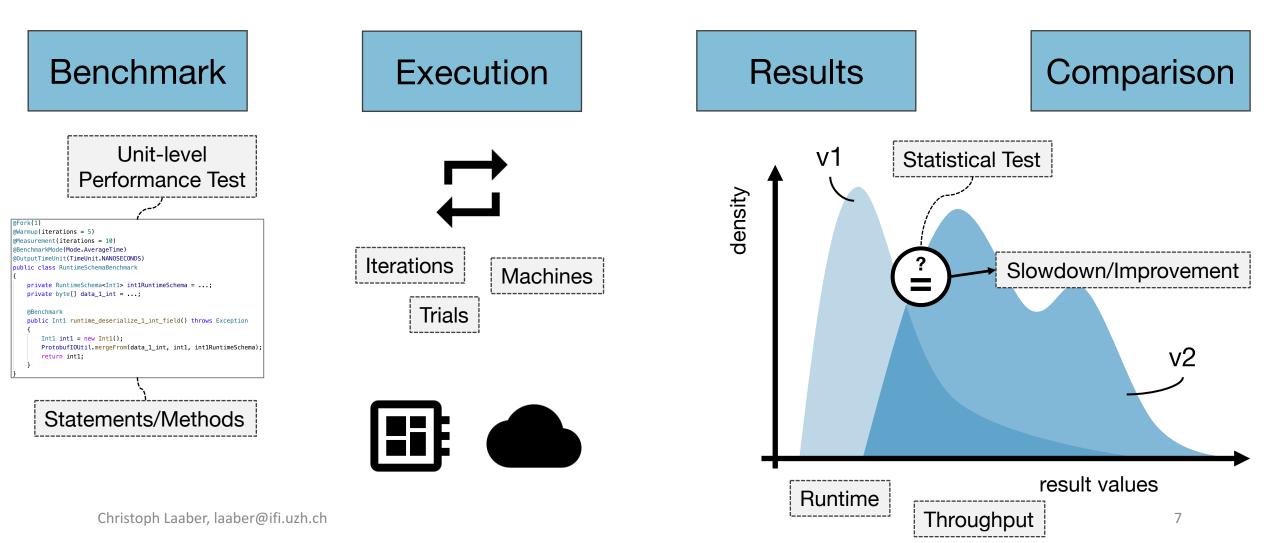

Unit test equivalent

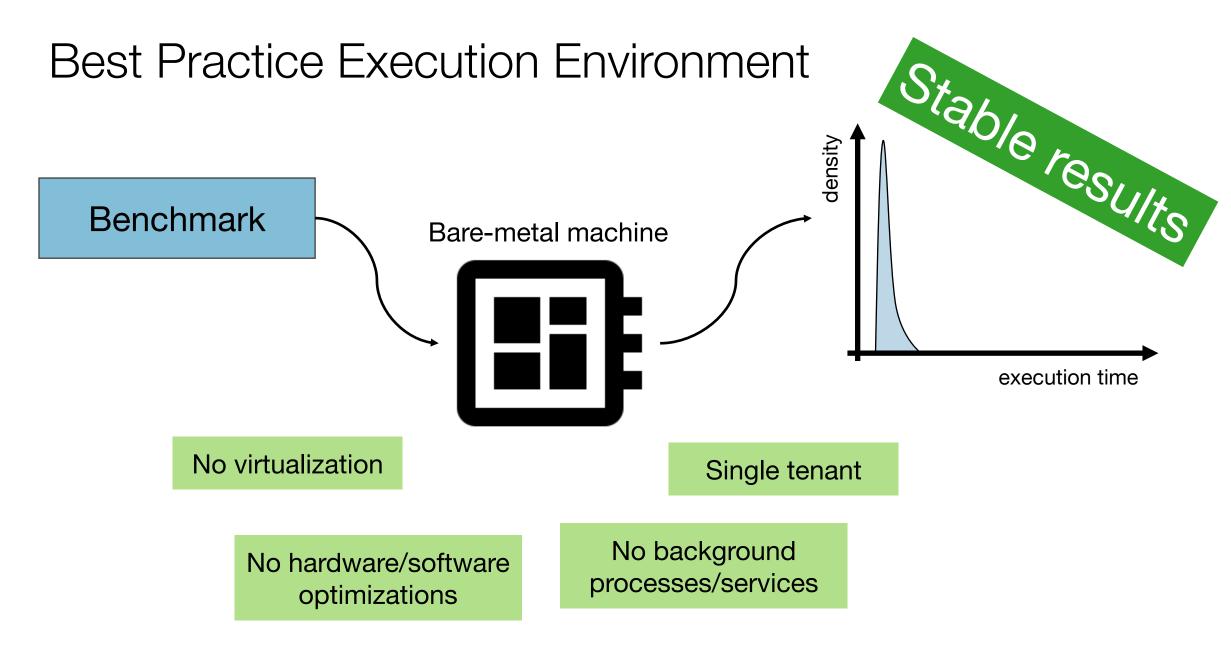

Granularity: statement/method


Execution Configuration

```
@Fork(1)
@Warmup(iterations = 5)
@Measurement(iterations = 10)
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
public class RuntimeSchemaBenchmark
    private RuntimeSchema<Int1> int1RuntimeSchema = ...;
    private byte[] data 1 int = ...;
    @Benchmark
    public Int1 runtime_deserialize_1_int_field() throws Exception
        Int1 int1 = new Int1();
        ProtobufIOUtil.mergeFrom(data_1_int, int1, int1RuntimeSchema);
        return int1;
```


Implementation



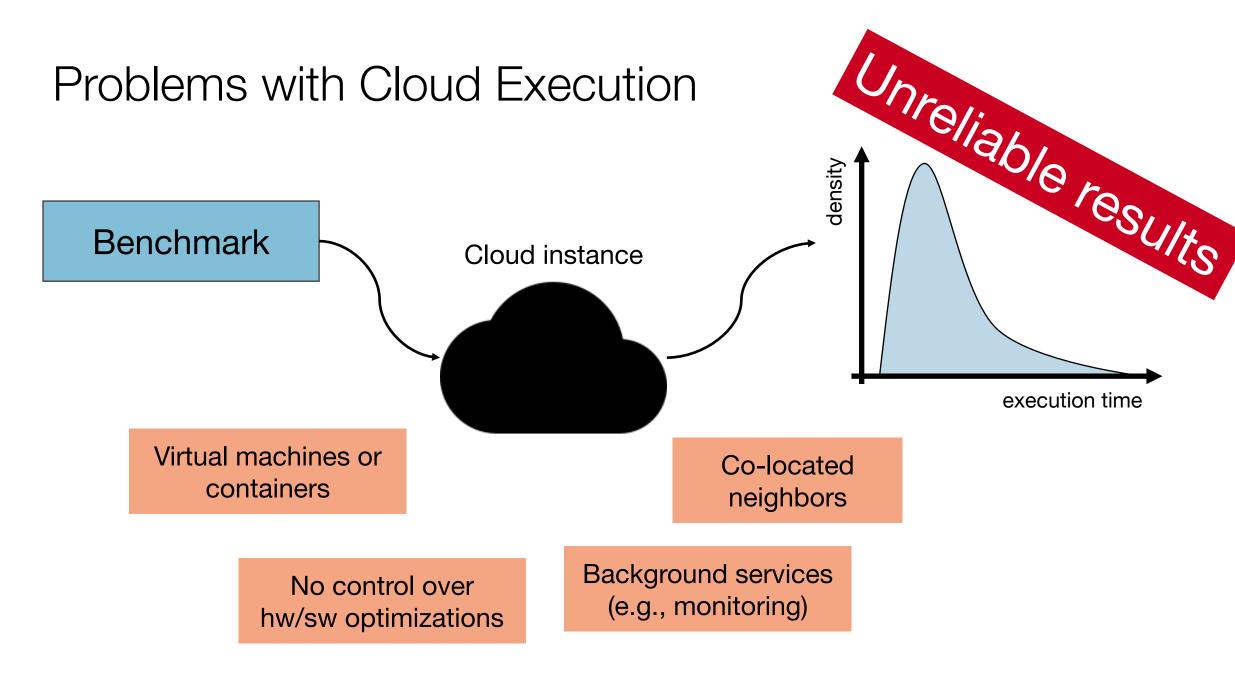


Christoph Laaber, laaber@ifi.uzh.ch

6

Throughput

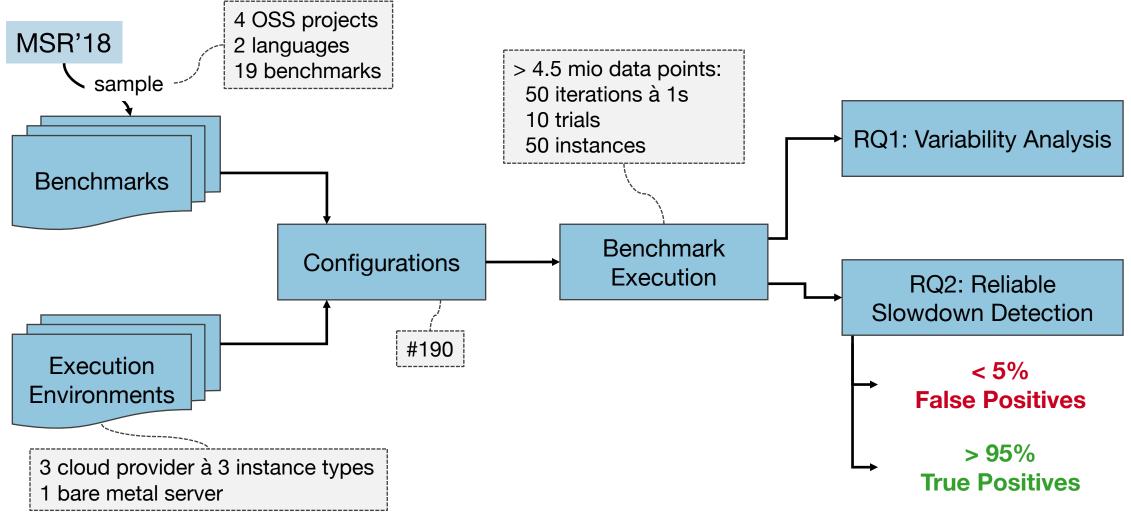
Why Execute Benchmarks in the Cloud then?


Unavailability of / no training for bare-metal machines

Long benchmarking run times

Little set-up and maintenance effort

Hosted continuous integration services



Empirically study microbenchmark executions in unreliable environments and **simulate** detectable slowdowns

RQ 1 How variable are microbenchmarks executed in different environments?

RQ 2 Which **slowdown sizes** can we **reliably** detect?

Methodology

Christoph Laaber, laaber@ifi.uzh.ch

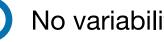
RQ 1 How variable are microbenchmarks executed in different environments?

RQ 2 Which slowdown sizes can we reliably detect?

Benchs		AWS			GCE			Azure		BM
	GP	CPU	Mem	GP	CPU	Mem	GP	CPU	Mem	
log4j2-1	45.41	42.17	48.53	41.40	43.47	44.38	46.19	40.79	51.79	41.95
$\log 4j2$ -2	7.90	4.89	3.92	10.75	9.71	11.29	6.18	6.06	11.01	3.83
$\log 4j2$ -3	4.86	3.76	2.53	10.12	9.18	10.15	13.89	7.55	15.46	3.02
log4j2-4	3.67	3.17	4.60	10.69	9.47	10.52	17.00	7.79	19.32	6.66
$\log 4j2$ -5	76.75	86.02	88.20	83.42	82.44	80.75	82.62	86.93	82.07	77.82
rxjava-1	0.04	0.04	0.05	0.04	0.04	0.04	0.05	0.05	0.27	0.03
rxjava-2	0.70	0.61	1.68	5.73	4.90	6.12	9.42	6.92	13.38	0.49
rxjava-3	2.51	3.72	1.91	8.16	8.28	9.63	6.10	5.81	10.32	4.14
rxjava-4	4.55	4.18	7.08	8.07	10.46	8.82	17.06	10.22	21.09	1.42
rxjava-5	5.63	2.81	4.04	14.33	11.39	13.11	61.98	64.24	21.69	1.76
bleve-2	1.57	1.32	4.79	5.56	6.09	5.78	5.97	5.48	13.29	0.27
bleve-3	1.13	7.53	7.77	10.08	10.74	14.42	7.62	6.12	14.41	0.18
bleve-4	4.95	4.38	5.17	11.24	12.00	14.52	8.18	7.11	15.24	0.62
bleve-5	10.23	9.84	8.18	57.60	58.42	59.32	52.29	46.40	52.74	10.16
etcd-1	1.03	3.17	1.56	6.45	5.21	7.62	6 36	4.89	11.46	0.15
etcd-2	4.06	4.45	6.28	66.79	69.07	69.18	100.68	94.73	90.19	29.46
etcd-3	1.25	0.69	1.24	7.15	6.57	9.26	4.95	4.31	9.89	0.14
etcd-4	6.80	6.00	7.34	34.53	34.34	34.37	12.28	12.39	22.92	8.09
etcd-5	43.59	22.46	43.44	27.21	27.86	27.17	30.54	31.40	24.98	23.73

Range between 0.03% and >100% CV

Benchs		AWS			GCE			Azure		BM
	GP	CPU	Mem	GP	CPU	Mem	GP	CPU	Mem	
log4j2-1	45.41	42.17	48.53	41.40	43.47	44.38	46.19	40.79	51.79	41.95
$\log 4j2-2$	7.90	4.89	3.92	10.75	9.71	11.29	6.18	6.06	11.01	3.83
$\log 4j2-3$	4.86	3.76	2.53	10.12	9.18	10.15	13.89	7.55	15.46	3.02
log4j2-4	3.67	3.17	4.60	10.69	9.47	10.52	17.00	7.79	19.32	6.66
$\log 4j2-5$	76.75	86.02	88.20	83.42	82.44	80.75	82.62	86.93	82.07	77.82
rxjava-1	0.04	0.04	0.05	0.04	0.04	0.04	0.05	0.05	0.27	0.03
rxjava-2	0.70	0.61	1.68	5.73	4.90	6.12	9.42	6.92	13.38	0.49
rxjava-3	2.51	3.72	1.91	8.16	8.28	9.63	6.10	5.81	10.32	4.14
rxjava-4	4.55	4.18	7.08	8.07	10.46	8.82	17.06	10.22	21.09	1.42
rxjava-5	5.63	2.81	4.04	14.33	11.39	13.11	61.98	64.24	21.69	1.76
bleve-2	1.57	1.32	4.79	5.56	6.09	5.78	5.97	5.48	13.29	0.27
bleve-3	1.13	7.53	7.77	10.08	10.74	14.42	7.62	6.12	14.41	0.18
bleve-4	4.95	4.38	5.17	11.24	12.00	14.52	8.18	7.11	15.24	0.62
bleve-5	10.23	9.84	8.18	57.60	58.42	59.32	52.29	46.40	52.74	10.16
etcd-1	1.03	3.17	1.56	6.45	5.21	7.62	6.36	4.89	11.46	0.15
etcd-2	4.06	4.45	6.28	66.79	69.07	69.18	100.68	94.73	90.19	29.46
etcd-3	1.25	0.69	1.24	7.15	6.57	9.26	4.95	4.31	9.89	0.14
etcd-4	6.80	6.00	7.34	34.53	34.34	34.37	12.28	12.39	22.92	8.09
etcd-5	43.59	22.46	43.44	27.21	27.86	27.17	30.54	31.40	24.98	23.73


2

3

3 groups of benchmarks

Benchs	GP	AWS CPU	Mem	GP	GCE CPU	Mem	GP	Azure CPU	Mem	$\mathbf{B}\mathbf{M}$
log4j2-1 log4j2-2 log4j2-3 log4j2-4 log4j2-5	$\begin{array}{c} 45.41 \\ 7.90 \\ 4.86 \\ 3.67 \\ 76.75 \end{array}$	$\begin{array}{r} 42.17 \\ 4.89 \\ 3.76 \\ 3.17 \\ 86.02 \end{array}$	$48.53 \\ 3.92 \\ 2.53 \\ 4.60 \\ 88.20$	$\begin{array}{c} 41.40 \\ 10.75 \\ 10.12 \\ 10.69 \\ 83.42 \end{array}$	$\begin{array}{r} 43.47 \\ 9.71 \\ 9.18 \\ 9.47 \\ 82.44 \end{array}$	44.38 11.29 10.15 10.52 80.75	$\begin{array}{r} 46.19 \\ 6.18 \\ 13.89 \\ 17.00 \\ 82.62 \end{array}$	40.79 6.06 7.55 7.79 86.93	51.79 11.01 15.46 19.32 82.07	$\begin{array}{c} 41.95 \\ 3.83 \\ 3.02 \\ 6.66 \\ 77.82 \end{array}$
rxjava-1	0.04	0.04	0.05	0.04	0.04	0.04	0.05	0.05	0.27	0.03
rxjava-2 rxjava-3 rxjava-4 rxjava-5	$ \begin{array}{c} 0.70 \\ 2.51 \\ 4.55 \\ 5.63 \end{array} $	$ \begin{array}{c} 0.61 \\ 3.72 \\ 4.18 \\ 2.81 \end{array} $	1.68 1.91 7.08 4.04	5.73 8.16 8.07 14.33	$ \begin{array}{r} 4.90 \\ 8.28 \\ 10.46 \\ 11.39 \end{array} $	$ \begin{array}{r} 6.12 \\ 9.63 \\ 8.82 \\ 13.11 \end{array} $	9.42 6.10 17.06 61.98	5.92 5.81 10.22 64.24	$ \begin{array}{r} 13.38 \\ 10.32 \\ 21.09 \\ 21.69 \\ \end{array} $	$0.49 \\ 4.14 \\ 1.42 \\ 1.76$
bleve-2 bleve-3 bleve-4 bleve-5	$1.57 \\ 1.13 \\ 4.95 \\ 10.23$	$1.32 \\ 7.53 \\ 4.38 \\ 9.84$	4.79 7.77 5.17 8.18	5.56 10.08 11.24 57.60	$6.09 \\ 10.74 \\ 12.00 \\ 58.42$	$5.78 \\ 14.42 \\ 14.52 \\ 59.32$	5.97 7.62 8.18 52.29	$5.48 \\ 6.12 \\ 7.11 \\ 46.40$	$13.29 \\ 14.41 \\ 15.24 \\ 52.74$	$0.27 \\ 0.18 \\ 0.62 \\ 10.16$

Range between 0.03% and >100% CV

2

 $(\mathbf{3})$

No variability => stable

Benchs	GP	AWS CPU	Mem	GP	GCE CPU	Mem	GP	Azure CPU	Mem	BM
log4j2-1 log4j2-2 log4j2-3 log4j2-4 log4j2-5	$\begin{array}{c} 45.41 \\ 7.90 \\ 4.86 \\ 3.67 \\ 76.75 \end{array}$	$\begin{array}{c} 42.17 \\ 4.89 \\ 3.76 \\ 3.17 \\ 86.02 \end{array}$	$\begin{array}{c} 48.53 \\ 3.92 \\ 2.53 \\ 4.60 \\ 88.20 \end{array}$	$\begin{array}{c} 41.40 \\ 10.75 \\ 10.12 \\ 10.69 \\ 83.42 \end{array}$	$\begin{array}{c} 43.47 \\ 9.71 \\ 9.18 \\ 9.47 \\ 82.44 \end{array}$	$\begin{array}{c} 44.38 \\ 11.29 \\ 10.15 \\ 10.52 \\ 80.75 \end{array}$	$\begin{array}{c} 46.19 \\ 6.18 \\ 13.89 \\ 17.00 \\ 82.62 \end{array}$	40.79 6.06 7.55 7.79 86.93	51.79 11.01 15.46 19.32 82.07	$\begin{array}{c} 41.95 \\ 3.83 \\ 3.02 \\ 6.66 \\ 77.82 \end{array}$
bleve-2 bleve-3 bleve-4 bleve-5	$1.57 \\ 1.13 \\ 4.95 \\ 10.23$	$ \begin{array}{r} 1.32 \\ 7.53 \\ 4.38 \\ 9.84 \end{array} $	4.79 7.77 5.17 8.18	$5.56 \\ 10.08 \\ 11.24 \\ 57.60$	$6.09 \\ 10.74 \\ 12.00 \\ 58.42$	$5.78 \\ 14.42 \\ 14.52 \\ 59.32$	5.97 7.62 8.18 52.29	$5.48 \\ 6.12 \\ 7.11 \\ 46.40$	$13.29 \\ 14.41 \\ 15.24 \\ 52.74$	$0.27 \\ 0.18 \\ 0.62 \\ 10.16$
etcd-1 etcd-2 etcd-3 etcd-4	$1.03 \\ 4.06 \\ 1.25 \\ 6.80$	$3.17 \\ 4.45 \\ 0.69 \\ 6.00$	$1.56 \\ 6.28 \\ 1.24 \\ 7.34$	$6.45 \\ 66.79 \\ 7.15 \\ 34.53$	5.21 69.07 6.57 34 34	$7.62 \\ 69.18 \\ 9.26 \\ 34.37$	$\begin{array}{r} 6.36 \\ 100.68 \\ 4.95 \\ 12.28 \end{array}$	$\begin{array}{r} 4.89 \\ 94.73 \\ 4.31 \\ 12.39 \end{array}$	$11.46 \\ 90.19 \\ 9.89 \\ 22.92$	$0.15 \\ 29.46 \\ 0.14 \\ 8.09$
etcd-5	43.59	22.46	43.44	27.21	27.86	27.17	30.54	31.40	24.98	23.73

Range between 0.03% and >100% CV

1) No variability => stable

Variable in all environments

(2)

Benchs	GP	AWS CPU	Mem	GP	GCE CPU	Mem	GP	Azure CPU	Mem	BM
log4j2-1 log4j2-2 log4j2-3 log4j2-4 log4j2-5	$\begin{array}{c} 45.41 \\ 7.90 \\ 4.86 \\ 3.67 \\ 76.75 \end{array}$	$\begin{array}{c} 42.17 \\ 4.89 \\ 3.76 \\ 3.17 \\ 86.02 \end{array}$	$\begin{array}{c} 48.53 \\ 3.92 \\ 2.53 \\ 4.60 \\ 88.20 \end{array}$	$\begin{array}{c} 41.40 \\ 10.75 \\ 10.12 \\ 10.69 \\ 83.42 \end{array}$	$\begin{array}{c} 43.47 \\ 9.71 \\ 9.18 \\ 9.47 \\ 82.44 \end{array}$	$\begin{array}{c} 44.38 \\ 11.29 \\ 10.15 \\ 10.52 \\ 80.75 \end{array}$	46.19 6.18 13.89 17.00 82.62	40.79 6.06 7.55 7.79 86.93	51.79 11.01 15.46 19.32 82.07	$\begin{array}{c} 41.95 \\ 3.83 \\ 3.02 \\ 6.66 \\ 77.82 \end{array}$
bleve-2 bleve-3 bleve-4	$1.57 \\ 1.13 \\ 4.95$	$1.32 \\ 7.53 \\ 4.38$	4.79 7.77 5.17	5.56 10.08 11.24	$6.09 \\ 10.74 \\ 12.00$	$5.78 \\ 14.42 \\ 14.52$	5.97 7.62 8.18	$5.48 \\ 6.12 \\ 7.11$	$13.29 \\ 14.41 \\ 15.24$	$0.27 \\ 0.18 \\ 0.62$
bleve-5	10.23	9.84	8.18	57.60	58.42	59.32	52.29	46.40	52.74	10.16
etcd-1 etcd-2 etcd-3 etcd-4 etcd-5	$1.03 \\ 4.06 \\ 1.25 \\ 6.80 \\ 43.59$	$3.17 \\ 4.45 \\ 0.69 \\ 6.00 \\ 22.46$	$1.56 \\ 6.28 \\ 1.24 \\ 7.34 \\ 43.44$	$6.45 \\ 66.79 \\ 7.15 \\ 34.53 \\ 27.21$	5.21 69.07 6.57 34.34 27.86	7.62 69.18 9.26 34.37 27.17	$6.36 \\ 100.68 \\ 4.95 \\ 12.28 \\ 30.54$	$\begin{array}{r} 4.89 \\ 94.73 \\ 4.31 \\ 12.39 \\ 31.40 \end{array}$	$11.46 \\90.19 \\9.89 \\22.92 \\24.98$	$0.15 \\ 29.46 \\ 0.14 \\ 8.09 \\ 23.73$

Range between 0.03% and >100% CV

1) No variability => stable

Variable in all environments

2

Variability changes

Benchs	GP	AWS CPU	Mem	GP	GCE CPU	Mem	GP	Azure CPU	Mem	BM
log4j2-1 log4j2-2 log4j2-3 log4j2-4 log4j2-5	$\begin{array}{c} 45.41 \\ 7.90 \\ 4.86 \\ 3.67 \\ 76.75 \end{array}$	$\begin{array}{c} 42.17 \\ 4.89 \\ 3.76 \\ 3.17 \\ 86.02 \end{array}$	$\begin{array}{r} 48.53 \\ 3.92 \\ 2.53 \\ 4.60 \\ 88.20 \end{array}$	41.40 10.75 10.12 10.69 83.42	$\begin{array}{c} 43.47 \\ 9.71 \\ 9.18 \\ 9.47 \\ 82.44 \end{array}$	$\begin{array}{c} 44.38 \\ 11.29 \\ 10.15 \\ 10.52 \\ 80.75 \end{array}$	$\begin{array}{c} 46.19 \\ 6.18 \\ 13.89 \\ 17.00 \\ 82.62 \end{array}$	$\begin{array}{c} 40.79 \\ 6.06 \\ 7.55 \\ 7.79 \\ 86.93 \end{array}$	51.79 11.01 15.46 19.32 82.07	$\begin{array}{c} 41.95 \\ 3.83 \\ 3.02 \\ 6.66 \\ 77.82 \end{array}$
rxjava-1 rxjava-2 rxjava-3 rxjava-4 rxjava-5	$\begin{array}{c} 0.04 \\ 0.70 \\ 2.51 \\ 4.55 \\ 5.63 \end{array}$	$0.04 \\ 0.61 \\ 3.72 \\ 4.18 \\ 2.81$	$0.05 \\ 1.68 \\ 1.91 \\ 7.08 \\ 4.04$	$0.04 \\ 5.73 \\ 8.16 \\ 8.07 \\ 14.33$					$\begin{array}{c} 0.27 \\ 13.38 \\ 10.32 \\ 21.09 \\ 21.69 \end{array}$	$\begin{array}{c} 0.03 \\ 0.49 \\ 4.14 \\ 1.42 \\ 1.76 \end{array}$
bleve-2 bleve-3 bleve-4 bleve-5	$1.57 \\ 1.13 \\ 4.95 \\ 10.23$	$1.32 \\ 7.53 \\ 4.38 \\ 9.84$	$\begin{array}{c} 4.79 \\ 7.77 \\ 5.17 \\ 8.18 \end{array}$	5.56 10.08 11.24 57.60	$6.09 \\ 10.74 \\ 12.00 \\ 58.42$	$5.78 \\ 14.42 \\ 14.52 \\ 59.32$	5.97 7.62 8.18 52.29	$5.48 \\ 6.12 \\ 7.11 \\ 46.40$	$13.29 \\ 14.41 \\ 15.24 \\ 52.74$	$0.27 \\ 0.18 \\ 0.62 \\ 10.16$
etcd-1 etcd-2 etcd-3 etcd-4 etcd-5	$1.03 \\ 4.06 \\ 1.25 \\ 6.80 \\ 43.59$	$3.17 \\ 4.45 \\ 0.69 \\ 6.00 \\ 22.46$	$1.56 \\ 6.28 \\ 1.24 \\ 7.34 \\ 43.44$	$6.45 \\ 66.79 \\ 7.15 \\ 34.53 \\ 27.21$	$5.21 \\ 69.07 \\ 6.57 \\ 34.34 \\ 27.86$	7.62 69.18 9.26 34.37 27.17	$\begin{array}{c} 6.36 \\ 100.68 \\ 4.95 \\ 12.28 \\ 30.54 \end{array}$	$\begin{array}{r} 4.89 \\ 94.73 \\ 4.31 \\ 12.39 \\ 31.40 \end{array}$	$11.46 \\90.19 \\9.89 \\22.92 \\24.98$	$\begin{array}{c} 0.15 \\ 29.46 \\ 0.14 \\ 8.09 \\ 23.73 \end{array}$

Range between 0.03% and >100% CV

No variability => stable

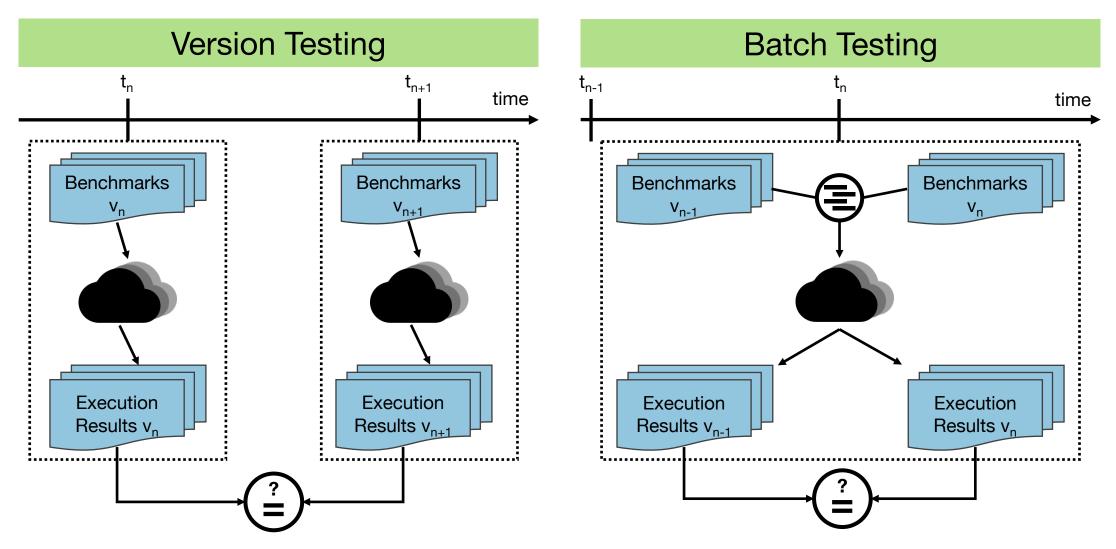
Variable in all environments

) Variability changes

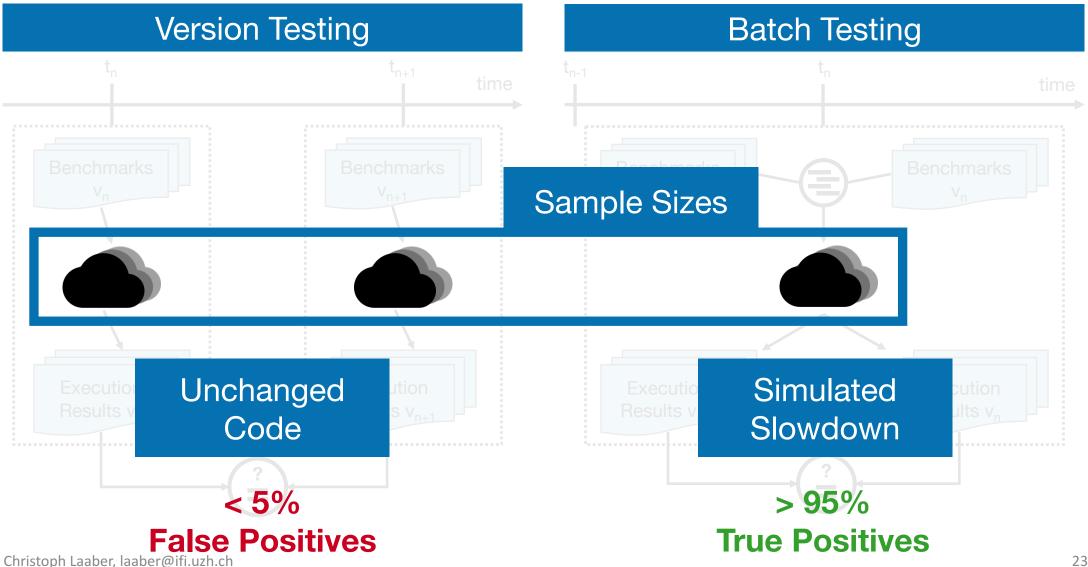
2

3

AWS and BM similarly stable

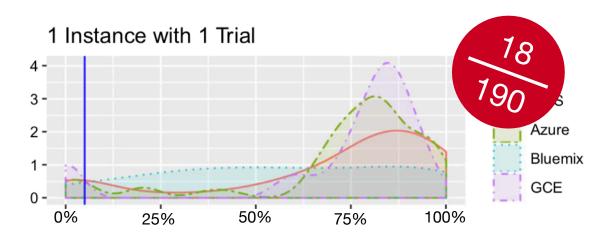

RQ 1 How variable are microbenchmarks executed in different environments?

RQ 2 Which slowdown sizes can we reliably detect?

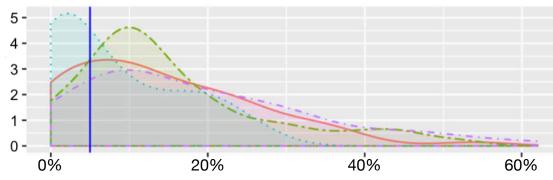

RQ 1 How variable are microbenchmarks executed in different environments?

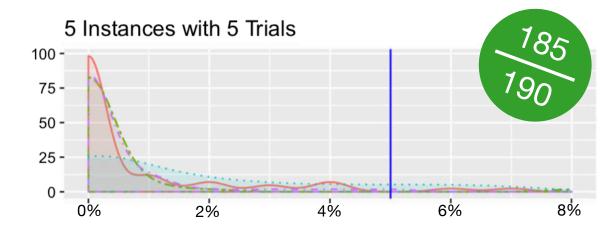
RQ 2 Which **slowdown sizes** can we **reliably** detect?

RQ 2: Detection Simulation -- Method



RQ 2: Detection Simulation -- Method


RQ 2: False Positives -- Results


Version Testing

Density

10 Instances with 1 Trial

20%

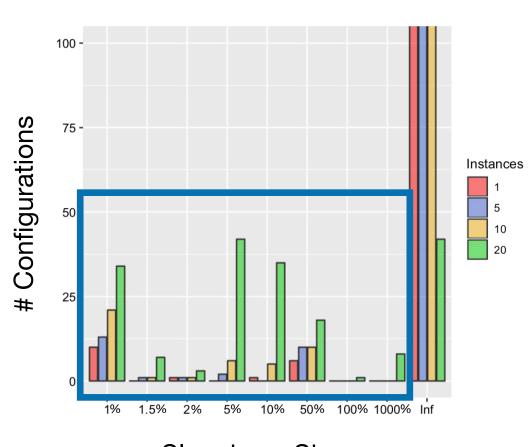
10%

Batch Testing

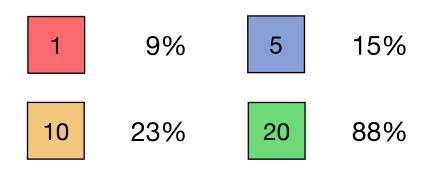
2 Instances with 5 Trials

False Positives

20 -

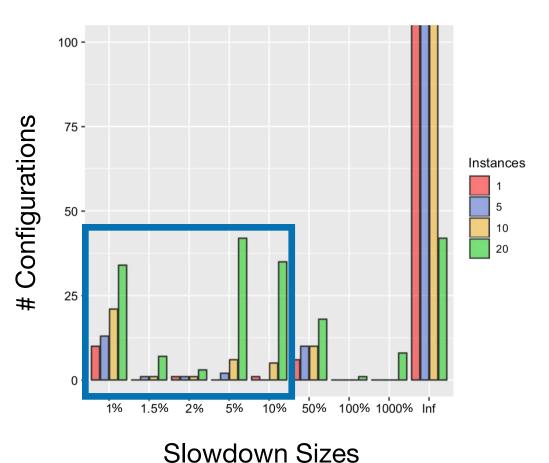

10 -

0 -


0%

30%

Version Testing



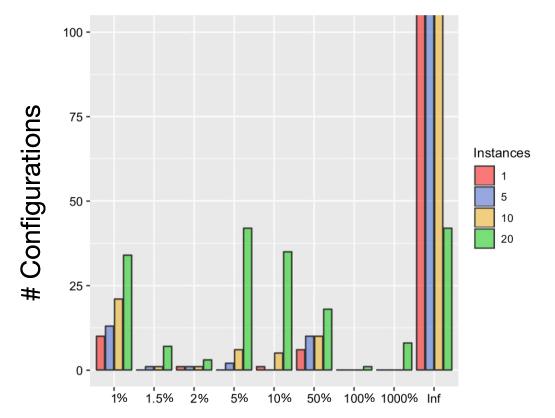
Reliable slowdown detection:

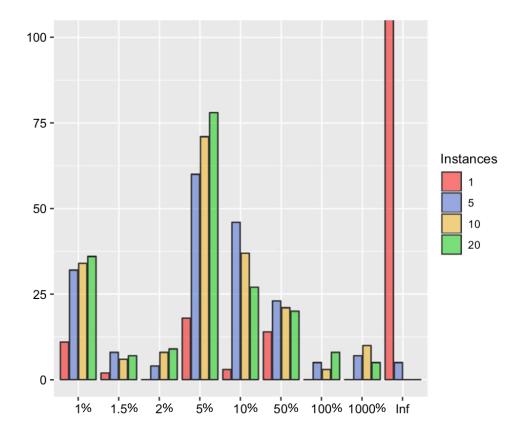
Slowdown Sizes Christoph Laaber, laaber@ifi.uzh.ch

Version Testing

Christoph Laaber, laaber@ifi.uzh.ch

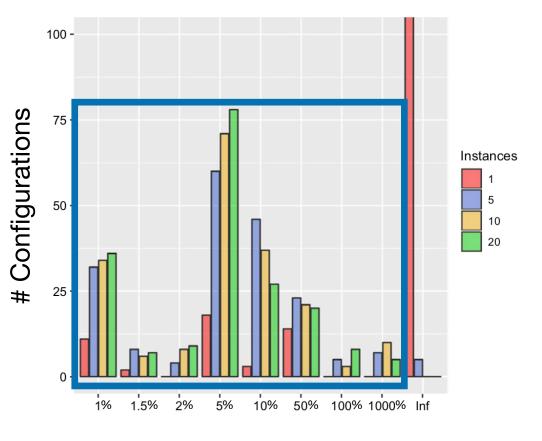
Reliable slowdown detection:


Slowdowns <= 10%:



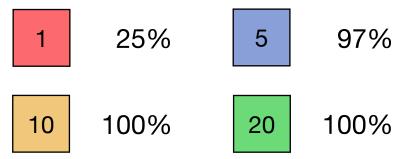
64% configurations

Version Testing

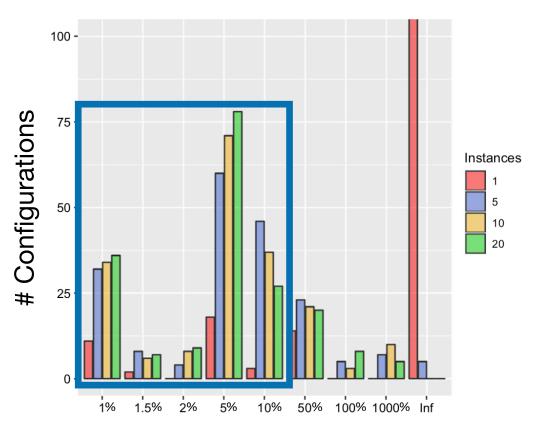


Slowdown Sizes

Batch Testing


Reliable slowdown detection:

Slowdown Sizes


Reliable slowdown detection:

Slowdowns $\leq 10\%$:

79% configurations

Batch Testing

Slowdown Sizes

What have we learned?

IBM bare-metal and AWS instances deliver stable results

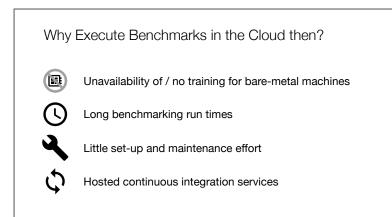
Always check for false positives

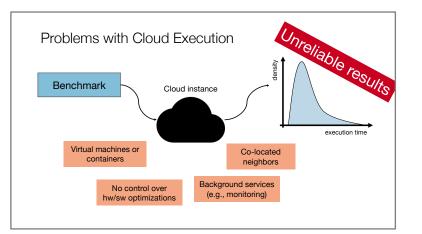
Batch testing increases reliability

Detection of 5%-10% slowdowns often possible

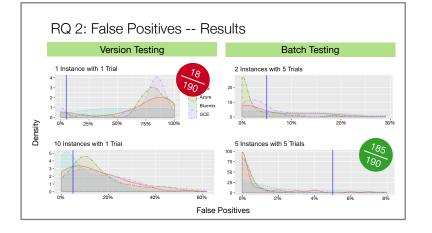
Help developers writing tests that have stable results

Automatically decide how often to replicate executions

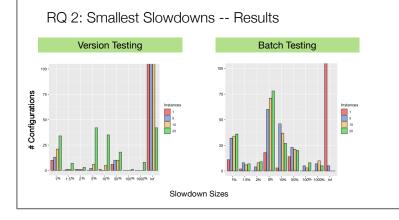

Prioritize/select reliable benchmarks


Generate reliable benchmarks

Software Microbenchmarking in the Cloud. How Bad is it Really?



Christoph Laaber, Joel Scheuner, Philipp Leitner



Benchs	GP	AWS CPU	Mem	GP	GCE CPU	Mem	GP	Azure CPU	Mem	BM	Range between 0.03% and >100% CV
log4j2-1	45.41	42.17	48.53	41.40	43.47	44.38	46.19	40.79	51.79	41.95	U U
log4j2-2	7.90	4.89	3.92	10.75	9.71	11.29	6.18	6.06	11.01	3.83	
log4j2-3	4.86	3.76	2.53	10.12	9.18	10.15	13.89	7.55	15.46	3.02	
log4j2-4 log4j2-5	$3.67 \\ 76.75$	$3.17 \\ 86.02$	$\frac{4.60}{88.20}$	$10.69 \\ 83.42$	$9.47 \\ 82.44$	$ \begin{array}{r} 10.52 \\ 80.75 \end{array} $	$17.00 \\ 82.62$	$7.79 \\ 86.93$	$19.32 \\ 82.07$		1 No variability => stable
rxjava-1	0.04	0.04	0.05	0.04	0.04	0.04	0.05	0.05	0.27	0.03	2 Variable in all environments
rxjava-2	0.70	0.61	1.68	5.73	4.90	6.12	9.42	6.92	13.38	0.49	
rxjava-3	2.51	3.72	1.91	8.16	8.28	9.63	6.10	5.81	10.32	4.14	
rxjava-4	4.55	4.18	7.08	8.07	10.46	8.82	17.06	10.22	21.09	1.42	
rxjava-5	5.63	2.81	4.04	14.33	11.39	13.11	61.98	64.24	21.69	1.76	
bleve-2	1.57	1.32	4.79	5.56	6.09	5.78	5.97	5.48	13.29	0.27	3 Variability changes
bleve-3	1.13	7.53	7.77	10.08	10.74	14.42	7.62	6.12	14.41	0.18	
bleve-4	4.95	4.38	5.17	11.24	12.00	14.52	8.18	7.11	15.24	0.62	
bleve-5	10.23	9.84	8.18	57.60	58.42	59.32	52.29	46.40	52.74	10.16	
etcd-1	1.03	3.17	1.56	6.45	5.21	7.62	6.36	4.89	11.46	0.15	AWS and BM similarly stable
etcd-2	4.06	4.45	6.28	66.79	69.07	69.18	100.68	94.73	90.19	29.46	
etcd-3	1.25	0.69	1.24	7.15	6.57	9.26	4.95	4.31	9.89	0.14	
etcd-4	6.80	6.00	7.34	34.53	34.34	34.37	12.28	12.39	22.92	8.09	
etcd-5	43.59	22.46	43.44	27.21	27.86	27.17	30.54	31.40	24.98	23.73	

laaber@ifi.uzh.ch

Future Ahead!
Help developers write tests that have stable results
Automatically decide how often to replicate executions
Prioritize/select benchmarks that are reliable
Generate benchmarks that are reliable

@ChristophLaaber <u>https://doi.org/10.1007/s10664-019-09681-1</u>

http://t.uzh.ch/T4

Paper, Scripts, and Data

Empirical Software Engineering (2019) 24:2469–2508 https://doi.org/10.1007/s10664-019-09681-1

Software microbenchmarking in the cloud. How bad is it really?

Christoph Laaber¹ · Joel Scheuner² · Philipp Leitner²

Published online: 17 April 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

Rigorous performance engineering traditionally assumes measuring on bare-metal environments to control for as many confounding factors as possible. Unfortunately, some researchers and practitioners might not have access, knowledge, or funds to operate dedicated performance-testing hardware, making public clouds an attractive alternative. However, shared public cloud environments are inherently unpredictable in terms of the system performance they provide. In this study, we explore the effects of cloud environments on the variability of performance test results and to what extent slowdowns can still be reliably detected even in a public cloud. We focus on software microbenchmarks as an example of performance tests and execute extensive experiments on three different well-known public cloud services (AWS, GCE, and Azure) using three different cloud instance types per service. We also compare the results to a hosted bare-metal offering from IBM Bluemix. In total, we gathered more than 4.5 million unique microbenchmarking data points from benchmarks written in Java and Go. We find that the variability of results differs substantially between benchmarks and instance types (by a coefficient of variation from 0.03% to >100%). However, executing test and control experiments on the same instances (in randomized order) allows us to detect slowdowns of 10% or less with high confidence, using state-of-the-art statistical tests (i.e., Wilcoxon rank-sum and overlapping bootstrapped confidence intervals). Finally, our results indicate that Wilcoxon rank-sum manages to detect smaller slowdowns in cloud environments

Keywords Performance testing · Microbenchmarking · Cloud · Performance-regression detection

Communicated by: Vittorio Cortellessa

Joel Scheuner

scheuner@chalmers.se

Philipp Leitner philipp.leitner@chalmers.se

Department of Informatics, University of Zurich, Zurich, Switzerland

² Software Engineering Division, Chalmers | University of Gothenburg, Gothenburg, Sweden

 $\underline{\textcircled{O}}$ Springer

Paper:

https://doi.org/10.1007/s10664-019-09681-1

Preprint:

http://t.uzh.ch/T4

Replication package:

https://doi.org/10.6084/m9.figshare.7546703