
Department of Informatics – s.e.a.l.

software evolution & architecture lab

2015-12-09 Page 1

Bursting with Possibilities

An Empirical Study of Credit-Based Bursting Cloud Instance Types
Dr. Philipp Leitner, Joel Scheuner
leitner@ifi.uzh.ch, joel.scheuner@uzh.ch

Department of Informatics – s.e.a.l.

software evolution & architecture lab

2015-12-09 Page 2

A new Type of Cloud Instances

Icons from the Noun Project: Rabbit by Hayden Kerrisk, Stopwatch by Nørgaard Andersen, Snail by Jems Mayor

➔  Behave fundamentally different than any
other existing instance type

Credit-Based Bursting Instances

Department of Informatics – s.e.a.l.

software evolution & architecture lab

Context

•  Infrastructure-as-a-Service (IaaS)

•  Virtual Machines (VMs) on a pay-per-use basis

•  Different performance characteristics

2015-12-09 Page 3 Icons from the Noun Project: CPU by iconsmind.com, ram by Bryn Bodayle, cloud-storage by Matthew Hawdon

CPU Memory I/O

Department of Informatics – s.e.a.l.

software evolution & architecture lab

2015-12-09 Page 4

Credit-Based CPU Bursting

Peak

Baseline

Icons from the Noun Project: Rabbit by Hayden Kerrisk, Snail by Jems Mayor

Department of Informatics – s.e.a.l.

software evolution & architecture lab

2015-12-09 Page 5

Bursting Instance Types in Industry

“The burstable model has proven to be
extremely popular with our customers.”

AWS Official Blog
Oct 2015

Announced a new instance type
in the burstable T2 family

“f1-micro machine types offer bursting capabilities
that allow instances to use additional physical CPU
for short periods of time”

Department of Informatics – s.e.a.l.

software evolution & architecture lab

2015-12-09 Page 6

Related Work

Cloud Benchmarking
•  S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema,

“A Performance Analysis of EC2 Cloud Computing Services for Scientific
Computing,” in Cloud Computing, ser. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering. Springer, 2010, vol. 34, pp. 115–131.

•  K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf, H. J.
Wasserman, and N. J. Wright, “Performance analysis of high performance computing
applications on the amazon web services cloud,” in Proceedings of the 2010 IEEE Second
International Conference on Cloud Computing Technology and Science, ser. CLOUDCOM ’10, 2010, pp. 159–168.

•  A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema,
“Performance Analysis of Cloud Computing Services for Many-Tasks Scientific
Computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 6, pp. 931–945, Jun. 2011.

Burstable Instances
•  J. Wen, L. Lu, G. Casale, and E. Smirni, “Less can be More: micro-Managing VMs in

Amazon EC2,” in Proceedings of the 2015 IEEE International Conference on Cloud Computing (CLOUD’15), 2015.

Department of Informatics – s.e.a.l.

software evolution & architecture lab

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ●0

10

20

30

18:10 18:20 18:30 18:40 18:50 19:00 19:10 19:20 19:30 19:40 19:50 20:00 20:10 20:20 20:30
Experiment Duration

C
PU

 C
re

di
t B

al
an

ce

●

●●●●

●

●

●●●

●

●

●●●●●

●

●

●●●●●

●●●

10x
100

200

300

18:10 18:20 18:30 18:40 18:50 19:00 19:10 19:20 19:30 19:40 19:50 20:00 20:10 20:20 20:30
Experiment Duration

Ex
ec

ut
io

n
Ti

m
e

(s
)

2015-12-09 Page 7

Credit-Based CPU Bursting – Explained (1)

1 CPU Credit full CPU core performance for 1 minute =̂

Peak
Baseline

Department of Informatics – s.e.a.l.

software evolution & architecture lab

0

25

50

75

100

18:10 18:20 18:30 18:40 18:50 19:00 19:10 19:20 19:30 19:40 19:50 20:00 20:10 20:20 20:30
Experiment Duration

C
PU

 T
im

e
(%

) CPU Time
user
steal
idle

●

●●●●

●

●

●●●

●

●

●●●●●

●

●

●●●●●

●●●

10x
100

200

300

18:10 18:20 18:30 18:40 18:50 19:00 19:10 19:20 19:30 19:40 19:50 20:00 20:10 20:20 20:30
Experiment Duration

Ex
ec

ut
io

n
Ti

m
e

(s
)

2015-12-09 Page 8

Credit-Based CPU Bursting – Explained (2)

Peak
Baseline

Department of Informatics – s.e.a.l.

software evolution & architecture lab

2015-12-09 Page 9

Research Questions

Icons from the Noun Project: CPU by iconsmind.com, cloud-storage by Matthew Hawdon,
Dashboard by Björn Andersson, Coins by hunotika, History by Joe Mortell

1.  How do t2 bursting instance types perform in terms of CPU
and IO speed in comparison to other instances?

2.  When are t2 bursting instance types more cost-efficient than
other instance types?

3.  How do t2 instance types perform in comparison to the
previous generation (t1) types?

Department of Informatics – s.e.a.l.

software evolution & architecture lab

2015-12-09 Page 10

Empirical Study Setup

[1] Scheuner, Leitner, Cito, Gall: Cloud WorkBench - Infrastructure-as-Code Based Cloud Benchmarking. CloudCom‘14

Region Ireland (eu-west-1)

Icons from the Noun Project: Month by Rohit Arun Rao, Shapes by Chananan,
Tool Presets by Fabiano Coelho, Repeat by Dimitry Sunseifer, Gears by Rigo Peter

All T2 bursting instance types in May 2015
(t2.micro, t2.small, t2.medium)

Sysbench measures CPU and I/O performance

50 data points for each configuration (~1000 in total)

Automated execution with Cloud WorkBench (CWB) [1]

1.-15. May 2015

Benchmark definitions and data publicly available:
https://github.com/sealuzh/bursting-cloud-instances

Department of Informatics – s.e.a.l.

software evolution & architecture lab

Results – T2 vs. Other Instance Types

2015-12-09 Page 11

t2.micro m3.medium m3.large c4.large t1.micro

0

1

2

3

4

t2.micro − Peak t2.micro − Base m3.medium m3.large c4.large t1.micro − Peak
Instance Types

M
ed

iu
m
−I

ns
ta

nc
e

Eq
ui

va
le

nt
s

Department of Informatics – s.e.a.l.

software evolution & architecture lab

Results – T2 Bursting Instances

2015-12-09 Page 12

t2.micro t2.small t2.medium

1

2

3

4

t2.micro − Peak t2.micro − Base t2.small − Peak t2.small − Base t2.medium − Peak t2.medium − Base
Instance Types

M
ed

iu
m
−I

ns
ta

nc
e

Eq
ui

va
le

nt
s

Department of Informatics – s.e.a.l.

software evolution & architecture lab

Results – Performance-Cost Ratio (1)

2015-12-09 Page 13

147

15

71

15

71

15

13

23

32

m3.medium

t2.medium − Peak

t2.small − Peak

t2.medium − Base

t2.micro − Base

t2.micro − Peak

t2.small − Base

m3.large

c4.large

0 50 100 150
Performance / Cost Ratio (pcr)

In
st

an
ce

 T
yp

es

medium-instance
equivalents per
USD and hour

Icons from the Noun Project: 24 hour by iconsmind.com, Ruler by Arthur Shlain, dollar by Simple Icons

=̂

medium-instance
hours

Department of Informatics – s.e.a.l.

software evolution & architecture lab

Results – Performance-Cost Ratio (2)

2015-12-09 Page 14

147

15

71

15

71

15

13

23

32

m3.medium

t2.medium − Peak

t2.small − Peak

t2.medium − Base

t2.micro − Base

t2.micro − Peak

t2.small − Base

m3.large

c4.large

0 50 100 150
Performance / Cost Ratio (pcr)

In
st

an
ce

 T
yp

es 15

15

14

15

14

15

13

23

32

m3.medium

t2.medium − Peak

t2.small − Peak

t2.medium − Base

t2.micro − Base

t2.micro − Peak

t2.small − Base

m3.large

c4.large

0 10 20 30
Full−Utilization Equivalent pcr

In
st

an
ce

 T
yp

es

Department of Informatics – s.e.a.l.

software evolution & architecture lab

Usage Scenarios – Low or Irregular Load

•  Identify the cutoff point for each T2 instance
•  Where does higher avg. utilization (u) make them less cost efficient

•  Assumptions: Service is CPU-bound + always requires peak performance

2015-12-09 Page 15

20

30

40

50

40 60 80 100
Utilization (%)

U
til

iz
at

io
n−

N
or

m
al

is
ed

 P
C

R Config

c4.large

m3.large

m3.medium

t2.medium − Peak

t2.micro − Peak

t2.small − Peak

Department of Informatics – s.e.a.l.

software evolution & architecture lab

2015-12-09 Page 16

Usage Scenarios – Boosting Performance-Cost Ratio

Idea
Exploit initial CPU credit balance on VM startup

Implementation
Systematically restart VM instances when they run out of CPU credits

Effect
Improved (utilization normalized) performance cost ratio up to 4x

Department of Informatics – s.e.a.l.

software evolution & architecture lab

2015-12-09 Page 17

Conclusions

t2.micro m3.medium m3.large c4.large t1.micro

0

1

2

3

4

t2.micro − Peak t2.micro − Base m3.medium m3.large c4.large t1.micro − Peak
Instance Types

M
ed

iu
m
−I

ns
ta

nc
e

Eq
ui

va
le

nt
st2.micro m3.medium m3.large c4.large t1.micro

0

1

2

3

4

t2.micro − Peak t2.micro − Base m3.medium m3.large c4.large t1.micro − Peak
Instance Types

M
ed

iu
m
−I

ns
ta

nc
e

Eq
ui

va
le

nt
s

20

30

40

50

40 60 80 100
Utilization (%)

U
til

iz
at

io
n−

N
or

m
al

is
ed

 P
C

R Config

c4.large

m3.large

m3.medium

t2.medium − Peak

t2.micro − Peak

t2.small − Peak

This research has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement no. 610802 (CloudWave).

T2 instance types perform highly predictable
unlike the previous T1 generation of
bursting instances.

T2 instance types provide
superior performance-cost ratio
below 40% average utilization

Icons from the Noun Project: Dice by chris dawson, Coins by hunotika

Department of Informatics – s.e.a.l.

software evolution & architecture lab

APPENDIX

2015-12-09 Page 18

Department of Informatics – s.e.a.l.

software evolution & architecture lab

Future Work

•  Limited to micro-benchmarks

à Validate results using application benchmarks / actual applications

•  Limited to CPU credit bursting

à Analyze the same bursting model for IOPS1

2015-12-09 Page 19

1 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html#IOcredit

Department of Informatics – s.e.a.l.

software evolution & architecture lab

Usage Scenarios – Non-Critical IO

•  Trend towards more homogenous IO performance
•  No substantial IO performance degradation even at baseline performance

à Use cost-efficient CPU instances for IO-bound applications

2015-12-09 Page 20

t2.micro t2.small t2.medium m3.medium m3.large c4.large t1.micro

0

1

2

3

4

t2.micro − Peak t2.micro − Base t2.small − Peak t2.small − Base t2.medium − Peak t2.medium − Base m3.medium m3.large c4.large t1.micro − Peak
Instance Types

M
ed

iu
m
−I

ns
ta

nc
e

Eq
ui

va
le

nt
s

Figure 2: CPU performance of all analyzed instance types. Performance of types of the t2 family is reported at peak and
baseline performance.

t2.micro t2.small t2.medium m3.medium m3.large c4.large t1.micro

0

10

20

30

40

t2.micro − Peak t2.micro − Base t2.small − Peak t2.small − Base t2.medium − Peak t2.medium − Base m3.medium m3.large c4.large t1.micro
Instance Types

D
is

k
R

ea
d/

W
rit

e
Sp

ee
d

[M
Bi

t/s
]

Figure 3: IO performance of all analyzed instance types. Performance of types of the t2 family is reported at peak and baseline
performance.

performance. This is due to the fact that these instance types
are not always served with the same hardware model, unlike
all current-generation AWS instance types [3].

2) IO Performance Comparison: In addition to CPU perfor-
mance, we also evaluated the different instance types in terms
of their combined disk read/write speed. We have again used
the sysbench implementation of an IO micro-benchmark,
which repeatedly reads and writes large files (4 GByte) to
the hard disk, and measures the combined read/write speed in
MBit per second.

Consistently with earlier research [3], [5], [8], we have seen
IO performance vary much more between benchmarking runs
than CPU speed. Arguably, this is due to IO performance being
much more susceptible to noisy neighbors and the detrimental
effects of cloud multi-tenancy. However, in addition, we have
also seen that for all analyzed instance types, IO benchmark-
ing results were not normally distributed. The measured IO
performance of all instance types typically was between 2.5
MBit/s and 7 MBit/s, but all instance types had occassional
outlier instances that performed an order of magnitude better
(between 20 MBit/s and 40 MBit/s). These outliers performed
roughly on the same IO performance level that we have seen
in an earlier study [3], while the bulk of instances nowadays
performs substantially worse than a year ago. We assume that
this is due to AWS currently changing their overall approach
to IO management, including a stronger focus on Provisioned
IOPS5.

5https://aws.amazon.com/about-aws/whats-new/2014/06/16/
introducing-the-amazon-ebs-general-purpose-ssd-volume-type/

t2.micro t2.small t2.medium
sp sb sp sb sp sb

(MB/s) (MB/s) (MB/s) (MB/s) (MB/s) (MB/s)
m̄ 4.9 3.1 7.8 3.3 5.3 2.4
mσ 138.4% 142.5% 108.5% 108.5% 137.3% 57.6%

Table IV: IO benchmarking results for t2 instance types in
MBit per second. Prices are as in Table II.

Due to the non-normality of IO data, we plot our results
in Beanplot notation [9] rather than as Boxplots (Figure 3).
Generally, while we have seen statistically significant differ-
ences between instance types, as well as between performance
on peak and baseline level for t2 instances, these differences
are very small in comparison to the substantial deviation of all
results (see also Table IV for concrete values for t2 instances,
and Table V for all comparison instance types). Note that
we have not experienced any positive outliers for previous-
generation bursting instances (t1.micro),

m3.medium m3.large c4.large t1.micro
(MB/s) (MB/s) (MB/s) (MB/s)

m̄ 7.75 6.94 3.99 2.11
mσ 135.7% 156.1% 137% 22.7%

Table V: IO benchmarking results for other current-generation
instance types in MBit per second. Prices are as in Table II.

Summarizing, our detailed IO benchmarking results remain
largely inconclusive, arguably because we appear to have
analyzed EC2 during a transitional period. However, it is
interesting to note that, by and large, differences between
different instance types, as well as between peak and baseline

Department of Informatics – s.e.a.l.

software evolution & architecture lab

Generations – T1 (previous) vs T2 (current)

2015-12-09 Page 21

Figure 5, which visualizes the repeated execution of two
example sysbench CPU benchmarks on a t1.micro and
a t2.micro instance. The trace for t1.micro has been
taken from [3]. Both setups used the same benchmark in the
same configuration, as well as the same benchmarking tool
chain.

100

200

300

0 20 40 60
Experiment Duration [min]

sy
sb

en
ch

 B
en

ch
m

ar
k

Va
lu

e
[s

]
Config t2.micro t1.micro

Figure 5: Comparison of performance development of stressed
t1 and t2 instances.

Both instances start on a constant peak performance level.
After a period of sustained usage, the performance of both
instances deteriorates. For the t1.micro instance, this means
that the instance largely behaves erratically, getting CPU
time whenever other co-located tenants are not using their
share. The t2.micro instance exhibits predictable perfor-
mance levels at peak and baseline performance, with a brief
15-minute period of graceful performance degradation. This
performance is largely independently of the usage patterns
of the instance’s neighbors. Another important observation
is that t2 instances are always served with the same hard-
ware model, unlike t1.micro instances, as well as unlike
previous-generation general-purpose instance types [7], [11].
This naturally increases the predictability of performance for
the cloud consumer.

IV. USAGE SCENARIOS

Based on the empirical data presented in Section III, we
now discuss three practical usage scenarios for t2 instances.

A. Hosting Services with Low or Irregular Load.
Given our empirical result that bursting instance types offer

superior performance per US dollar spent as long as instances
are given time to replenish their credit, an obvious usage
scenario is to use them for services or applications with low
or irregular overall utilization. These include new services,
products, or Web servers of small start-up companies, which
simply do not yet have a large, established customer base.
Alternatively, bursting instance types are also attractive for
services whose usage is subject to substantial variation over
the time of a day. This can include, for instance, regional
commercial services, which are primarily used during working

hours. In such scenarios, bursting instances can replenish cred-
its during off-times in order to operate at peak performance
during peak hours.

Conversely, our results have also shown that for highly-
loaded CPU-bound applications, larger general-purpose or
compute-optimized instance types provide better performance-
cost ratio pcr. Hence, a relevant question is where the cutoff
point is. This is visualized in Figure 6. We have depicted the
utilization-normalized performance-cost ratio for increasing
average utilization (unpcr). Up to 40% average utilization,
bursting instance types offer the best per-cost CPU perfor-
mance. Starting with 40% utilization, c4.large offers better
pcr, while bursting instances still outperform m3.large on
this utilization level. This changes at 60% utilization, from
which on m3.large is also more cost-efficient than any
bursting instance type. m3.medium is generally less cost-
efficient than any bursting or non-bursting alternative, even
under 100% usage. It should be noted that these cutoff points
are valid only under the assumptions that (1) the service is
primarily CPU-bound, and (2) the user requires peak perfor-
mance whenever the service is actually used. Specifically, if
a user is willing to operate at baseline performance for some
percentage of the time, she may be able to operate with less
instances to satisfactory performance. Hence, in this case, the
cutoff will shift to the right.

B. Hosting Non-Critical IO or Network-Bound Services.

Another interesting empirical result of our study was that
there currently is a trend towards more homogeneous IO
performance across instance types. This suggests that bursting
instance types are an attractive alternative for some services
that are IO-bound (e.g., small databases or file servers). As
the IO performance of bursting instances does not degrade
substantially even at baseline performance, this remains true
even if the average utilization is close to 100%. Due to how
IO is typically implemented in public clouds, network and
IO performance is usually strongly correlated. Hence, we
speculate that the same results also hold for services that are
primarily network-bound, (e.g., small Web servers).

However, users need to keep in mind that IO performance is,
in absolute terms, very low for all smaller current-generation
instance types without Provisioned IOPS. Further, as discussed
in Section III, the variability in terms of IO performance
is tremendous for all studied instance types, indicating that
all studied instance types should not be used for IO or
network-bound applications where stability and predictability
of performance is critical, such as many customer-facing or
business-critical applications.

C. Boosting PCR via Systematic Instance Restarting.

Finally, due to how bursting instance types are currently
implemented, users are able to boost the pcr of their instances
to some extent. The basic feature that enables boosting is
that bursting instances receive an initial amount of credits on
startup or reboot ts > 0. As discussed in Section II-B, ts
is currently designed to allow instances to operate on peak

Department of Informatics – s.e.a.l.

software evolution & architecture lab

Formal Model – Concise

•  performance-cost ratio (at a given time t)
•  Unit: medium instance equivalents per USD and hour
•  Arithmetic mean of all 50 benchmark observations [seconds]

•  Hourly costs per started billing time unit [USD]

•  utilization-normalized cost-performance ratio

•  Intuitively: costs of operating a cluster of bursting instances, so that
one instance can always be operated at peak performance under the
assumed utilization level (e.g., need 10x t2.micro for u=100)

•  Utilization level

•  Standard instance utilization (i.e., utilization rate that keeps CPU
credit balance constant)

2015-12-09 Page 22

Bursting Instance Types 9

types was comparable to general-purpose or CPU-optimized instance types (not
shown for reasons of brevity).

Comparison of Cost E�ciency. So far, we have discussed and contrasted the
performance of instance types independently of their hourly costs. As indicated
in [8], such an isolated view is often of limited usefulness in a cloud comput-
ing context. Rather, practitioners are typically interested in the performance
per US Dollar spent of an instance type. We define the performance-cost ratio as
pcr(t) = m̄

c(t) . The unit of pcr are medium-instance equivalents per US dollar and
hour. We visualize pcr for all configurations and CPU performance in Figure 3a.
Evidently, on sp, all bursting instance types provide tremendous per-cost val-
ues. For instance, the cheapest type t2.micro surpasses the compute-optimized
c4.large type in CPU performance per USD almost by a factor of 5 as long
as the instance’s credits are not depleted. Conversely, on sb, bursting instance
types are less cost-e�cient than all other types in our study with the interesting
exception of m3.medium.

147

15

71

15

71

15

13

23

32

m3.medium

t2.medium − Peak

t2.small − Peak

t2.medium − Base

t2.micro − Base

t2.micro − Peak

t2.small − Base

m3.large

c4.large

0 50 100 150
Performance / Cost Ratio (pcr)

In
st

an
ce

 T
yp

es

(a) Comparison of performance-cost ra-
tios pcr(t) of di↵erent instance types.

15

15

14

15

14

15

13

23

32

m3.medium

t2.medium − Peak

t2.small − Peak

t2.medium − Base

t2.micro − Base

t2.micro − Peak

t2.small − Base

m3.large

c4.large

0 10 20 30
Full−Utilization Equivalent pcr

In
st

an
ce

 T
yp

es

(b) Comparison of full-utilization equiva-
lent performance-cost ratios unpcr(t,100).

Fig. 3: Comparison of cost e�ciency

However, looking at the pcr alone is misleading, as this metric obfuscates
the fact that, in order to get the performance-cost ratio indicated above, users
can only utilize a bursting instance a fraction of the time (corresponding to
tū in Table 1, e.g., 10% for t2.micro), and need to let the instance idle to
replenish credits the rest of the time. Hence, it makes sense to consider a second,
related metric, the utilization-normalized cost-performance ratio uncpr, defined
as uncpr(t, u) = d u

100 tū
ecpr(t) for a given instance type t 2 T and an utilization

level u 2 [0; 100]. Intuitively, uncpr can be interpreted as the costs of operating a
cluster of bursting instances, so that one instance can always be operated at peak

6 Philipp Leitner and Joel Scheuner

3.1 Study Setup

We have used Cloud Workbench [5,6] (CWB) and the sysbench benchmark to
collect empirical performance data in two dimensions: CPU performance (integer
arithmetics) and disk IO (combined hard disk read/write speed). We have eval-
uated all instance types in the t2 family on their peak as well as their baseline
performance levels, along with the general-purpose instance types m3.medium

and m3.large and the smallest compute-optimized type c4.large. To measure
peak performance of bursting instances, we started an instance and immediately
ran the respective benchmark. As all benchmark executions lasted less than 30
minutes, its on all instance types was su�cient to guarantee that instances always
ran at peak performance level in this setup (cp. also Table 1). To measure the
baseline performance, we again acquired an instance of the specific type, fully
depleted its startup credits by repeatedly executing a CPU benchmark for 70
minutes, and then executed the targeted benchmark. For each configuration, we
collected 50 data points. All data was collected between May, 1st and May, 15th
2015 in the eu-west-1 region of AWS EC2. All data, as well as the CWB files
used to define the benchmarks, are available on GitHub4.

3.2 Results

We now discuss our benchmarking results in terms of CPU and IO perfor-
mance and cost e�ciency. Further, we compare t2 bursting instance types to
the previously-studied t1 generation.

Performance Comparison. For benchmarking CPU performance, we used the
sysbench CPU benchmark, which is a focused micro-benchmark measuring the
performance of integer arithmetics. The result of the benchmark is the duration
it took to execute a defined set of arithmetic operations. As this measure is rather
abstract, we normalize our results (analogous to [7]) using the mean performance
of a single m3.medium instance as a baseline for comparison (59 seconds). We refer
to this unit as medium-instance equivalents. The sysbench CPU results s are
converted to medium-instance equivalents using the transformation ✓ : R ! R,
defined as ✓(s) = 59

s . Intuitively, a performance of x medium-instance equivalents

for an instance type means that a user would need to acquire x m3.medium

instances to achieve the same mean integer arithmetics performance.
Figure 2a depicts the benchmarking results for all t2 instance types in Box-

plot notation, on sp and sb performance levels. The dashed horizontal line rep-
resents the baseline performance of a single t3.medium instance. This data is
also summarized in Table 2. We use m̄ to denote the arithmetic mean of all 50
benchmark observations, and m� for the relative standard deviation in percent.

We have observed empirical results close to what we expected based on Ta-
ble 1. All bursting instance types are substantially faster than the baseline on

4
https://github.com/sealuzh/bursting-cloud-instances

Bursting Instance Types 3

all prime numbers between 0 and 10.000 using the Sieve of Eratosthenes). Gen-
erally, for all instances, the peak performance level is substantially preferable to
the baseline performance level to the cloud consumer (8i 2 I : sp(it) << sb(it)).
At this point we ignore the fact that di↵erent CPUs in practice perform dif-
ferently for di↵erent types of CPU operations (e.g., floating point arithmetics
versus integer arithmetics). Due to how credit-based bursting instance types are
technically implemented by cloud operators (see Section 2.2), this di↵erence is
of little concern for this study.

The applicable performance level at any point in time depends on the amount
of credits and instance currently has ic 2 R+. An instance can operate at peak
performance level as long as it has a positive amount of credits (ic > 0). When-
ever an instance operates at peak performance (CPU is non-idle), its credits will
deplete with a rate of td 2 I+ per hour. Simultaneously, its credits replenish with
a constant rate of tr 2 I+ per hour, independently of instance usage. For prac-
tical reasons, the rate of replenishment is substantially lower than the rate of
depletion (8t 2 T : tr << td). An instance is throttled to baseline performance
level if it has completely depleted its credits.

Instances typically do not start with an empty credit balance. Rather, in-
stances receive an initial amount of credits on startup ts 2 I+, which allows new
instances to immediately operate at peak performance for a predictable amount
of time after startup. Conversely, idle instances cannot accrue credits forever,
as the maximum amount of credits per instance is capped at tm 2 I+. As by
definition the credit balance can never deplete below 0 (instances cannot op-
erate at peak performance after fully depleting their credits), this means that
8i 2 I : 0  ic  itm at any time.

Note that this process of credit depletion and replenishment is continuously
executed in the background by the cloud provider. Credit depletion works on
a millisecond basis and with fractional credits. That is, in practice, assuming a
freshly started instance i has an average CPU load of 50% over its first hour of

operation, the instance’s credit balance will be ic = its �
itd
2 + itr. Assuming that

its > itd
2 , the instance will be able to able to operate at a CPU performance of

sp(it) through the hour. However, given that typically itd
2 > itr, the instance will

use parts of its credits in the process. In order to actually accumulate credits, the

average CPU utilization of the instance will need to be below itr
itd
. We denote the

utilization rate that keeps the instance credit balance constant as the standard

instance utilization tū. Finally, an instance has defined hourly costs c(t) 2 R+,
which depend on its type and are represented as US dollars per started billing
time unit (BTU), e.g., one hour.

2.2 Implementation in Amazon EC2

This model is already implemented and publicly available in the (at the time of
writing) current generation of bursting instance types (t2) in AWS EC2. Three
di↵erent concrete instance types that follow this model are available: t2.micro,
t2.small, and t2.medium. All three instance types are backed by the same

Bursting Instance Types 9

types was comparable to general-purpose or CPU-optimized instance types (not
shown for reasons of brevity).

Comparison of Cost E�ciency. So far, we have discussed and contrasted the
performance of instance types independently of their hourly costs. As indicated
in [8], such an isolated view is often of limited usefulness in a cloud comput-
ing context. Rather, practitioners are typically interested in the performance
per US Dollar spent of an instance type. We define the performance-cost ratio as
pcr(t) = m̄

c(t) . The unit of pcr are medium-instance equivalents per US dollar and
hour. We visualize pcr for all configurations and CPU performance in Figure 3a.
Evidently, on sp, all bursting instance types provide tremendous per-cost val-
ues. For instance, the cheapest type t2.micro surpasses the compute-optimized
c4.large type in CPU performance per USD almost by a factor of 5 as long
as the instance’s credits are not depleted. Conversely, on sb, bursting instance
types are less cost-e�cient than all other types in our study with the interesting
exception of m3.medium.

147

15

71

15

71

15

13

23

32

m3.medium

t2.medium − Peak

t2.small − Peak

t2.medium − Base

t2.micro − Base

t2.micro − Peak

t2.small − Base

m3.large

c4.large

0 50 100 150
Performance / Cost Ratio (pcr)

In
st

an
ce

 T
yp

es

(a) Comparison of performance-cost ra-
tios pcr(t) of di↵erent instance types.

15

15

14

15

14

15

13

23

32

m3.medium

t2.medium − Peak

t2.small − Peak

t2.medium − Base

t2.micro − Base

t2.micro − Peak

t2.small − Base

m3.large

c4.large

0 10 20 30
Full−Utilization Equivalent pcr

In
st

an
ce

 T
yp

es

(b) Comparison of full-utilization equiva-
lent performance-cost ratios unpcr(t,100).

Fig. 3: Comparison of cost e�ciency

However, looking at the pcr alone is misleading, as this metric obfuscates
the fact that, in order to get the performance-cost ratio indicated above, users
can only utilize a bursting instance a fraction of the time (corresponding to
tū in Table 1, e.g., 10% for t2.micro), and need to let the instance idle to
replenish credits the rest of the time. Hence, it makes sense to consider a second,
related metric, the utilization-normalized cost-performance ratio uncpr, defined
as uncpr(t, u) = d u

100 tū
ecpr(t) for a given instance type t 2 T and an utilization

level u 2 [0; 100]. Intuitively, uncpr can be interpreted as the costs of operating a
cluster of bursting instances, so that one instance can always be operated at peak

Bursting Instance Types 3

all prime numbers between 0 and 10.000 using the Sieve of Eratosthenes). Gen-
erally, for all instances, the peak performance level is substantially preferable to
the baseline performance level to the cloud consumer (8i 2 I : sp(it) << sb(it)).
At this point we ignore the fact that di↵erent CPUs in practice perform dif-
ferently for di↵erent types of CPU operations (e.g., floating point arithmetics
versus integer arithmetics). Due to how credit-based bursting instance types are
technically implemented by cloud operators (see Section 2.2), this di↵erence is
of little concern for this study.

The applicable performance level at any point in time depends on the amount
of credits and instance currently has ic 2 R+. An instance can operate at peak
performance level as long as it has a positive amount of credits (ic > 0). When-
ever an instance operates at peak performance (CPU is non-idle), its credits will
deplete with a rate of td 2 I+ per hour. Simultaneously, its credits replenish with
a constant rate of tr 2 I+ per hour, independently of instance usage. For prac-
tical reasons, the rate of replenishment is substantially lower than the rate of
depletion (8t 2 T : tr << td). An instance is throttled to baseline performance
level if it has completely depleted its credits.

Instances typically do not start with an empty credit balance. Rather, in-
stances receive an initial amount of credits on startup ts 2 I+, which allows new
instances to immediately operate at peak performance for a predictable amount
of time after startup. Conversely, idle instances cannot accrue credits forever,
as the maximum amount of credits per instance is capped at tm 2 I+. As by
definition the credit balance can never deplete below 0 (instances cannot op-
erate at peak performance after fully depleting their credits), this means that
8i 2 I : 0  ic  itm at any time.

Note that this process of credit depletion and replenishment is continuously
executed in the background by the cloud provider. Credit depletion works on
a millisecond basis and with fractional credits. That is, in practice, assuming a
freshly started instance i has an average CPU load of 50% over its first hour of

operation, the instance’s credit balance will be ic = its �
itd
2 + itr. Assuming that

its > itd
2 , the instance will be able to able to operate at a CPU performance of

sp(it) through the hour. However, given that typically itd
2 > itr, the instance will

use parts of its credits in the process. In order to actually accumulate credits, the

average CPU utilization of the instance will need to be below itr
itd
. We denote the

utilization rate that keeps the instance credit balance constant as the standard

instance utilization tū. Finally, an instance has defined hourly costs c(t) 2 R+,
which depend on its type and are represented as US dollars per started billing
time unit (BTU), e.g., one hour.

2.2 Implementation in Amazon EC2

This model is already implemented and publicly available in the (at the time of
writing) current generation of bursting instance types (t2) in AWS EC2. Three
di↵erent concrete instance types that follow this model are available: t2.micro,
t2.small, and t2.medium. All three instance types are backed by the same

147

15

71

15

71

15

13

23

32

m3.medium

t2.medium − Peak

t2.small − Peak

t2.medium − Base

t2.micro − Base

t2.micro − Peak

t2.small − Base

m3.large

c4.large

0 50 100 150
Performance / Cost Ratio (pcr)

In
st

an
ce

 T
yp

es

(a) Comparison of performance-cost ratios pcr(t) of different in-
stance types.

15

15

14

15

14

15

13

23

32

m3.medium

t2.medium − Peak

t2.small − Peak

t2.medium − Base

t2.micro − Base

t2.micro − Peak

t2.small − Base

m3.large

c4.large

0 10 20 30
Full−Utilization Equivalent pcr

In
st

an
ce

 T
yp

es
(b) Comparison of full-utilization equivalent performance-cost ratios
unpcr(t,100).

Figure 4: Comparison of cost efficiency

performance for t2 instances, are not as relevant anymore as
what we and others have experienced in previous studies [3].
This indicates a longer trend towards more homogeneous IO
performance across instance types, which has implications for
practitioners and researchers.

3) Comparison of CPU Cost Efficiency: So far, we have
discussed and contrasted the performance of instance types
independently of their hourly costs. As indicated in [10],
such an isolated view is often of limited usefulness in a
cloud computing context. Rather, practitioners are typically
interested in the performance per US Dollar spent of an
instance type, which we now discuss.

We define the performance-cost ratio as pcr(t) = m̄
c(t) . The

unit of pcr are medium-instance equivalents per US dollar
and hour. We visualize pcr for all configurations and CPU
performance in Figure 4a. Evidently, on peak performance
level, all bursting instance types provide tremendous per-cost
values. For instance, the cheapest type t2.micro surpasses
the compute-optimized c4.large type in CPU performance
per USD almost by a factor of 5 as long as the instance’s
credits are not depleted. Conversely, on baseline performance
level, bursting instance types are less cost-efficient than all
other types in our study with the interesting exception of
m3.medium.

However, looking at the pcr alone is misleading, as this
metric does not consider the fact that, in order to get the
performance-cost ratio indicated above, users can only utilize
a bursting instance a fraction of the time (corresponding to
tū in Table I, e.g., 10% for t2.micro), and need to let
the instance idle to replenish credits the rest of the time.
Hence, it makes sense to consider a second, related metric,
the utilization-normalized performance-cost ratio (unpcr). In-
tuitively, unpcr can be interpreted as the costs of operating a
cluster of bursting instances, so that one instance can always
be operated at peak performance under the assumed utiliza-
tion level. For an utilization of 100% and the t2.micro

type, this can be achieved by acquiring 10 instances and
alternating requests between them, so that each instance is
idle 90% of the time and the credit balance of each instance
remains stable indefinitely. We formally define unpcr(t, u)
as unpcr(t, u) = pcr(t)

⌈ u
tū

⌉ for a given instance type t ∈ T

and an utilization level u ∈ [0; 100]. In this definition, the
term ⌈ u

tū
⌉ represents the number of bursting instances that

are required to indefinitely operate at peak performance under
the assumed utilization level. ⌈ ⌉ denotes rounding up to the
next full natural number, as it makes little sense to consider
fractions of virtual machine instances. Figure 4b visualizes
unpcr for full utilization (u = 100) and all configurations. For
all non-bursting types, as well as for bursting types at baseline
performance, pcr(t) = unpcr(t, 100) by definition. This
visualization shows that currently, all t2 types are designed
with a similar unpcr(t, 100) target of 14 to 15. m3.medium
instances are slightly less cost-efficient with an unpcr(t, 100)
of 13, while we see economies of scale become relevant
for the larger m3.large and c4.large instance types.
These results reinforce the rather intuitive notion that bursting
instance types are very cost-efficient if used only sporadically,
but quickly become inefficient in sustained usage, i.e., when
used with high utilization. Our results also show that there is
currently no clear advantage to using m3.medium instances,
as they are less cost-efficient than bursting instance types even
in sustained use.

4) Comparison to Previous-Generation Bursting Instances:
Another interesting question is how current-generation t2
instance types compare to the previously available t1 types,
most importantly t1.micro. Both instance type families
share similar basic ideas, but the actual implementation varies
considerably. Ultimately, t1.micro is a high-variance, best-
effort based instance type, while current-generation bursting
instance types follow a largely predictable performance tra-
jectory, as discussed in Section II-A. This is illustrated in

Department of Informatics – s.e.a.l.

software evolution & architecture lab

Formal Model – Basic Definitions (1)

•  Bursting instances (I)
•  Credit-based bursting instance types (T)

•  Peak performance level

•  Baseline performance level

•  CPU credits available

•  Replenishment rate per hour (when CPU idle)
•  Depletion rate per hour (when CPU non-idle)

•  Startup credits (initial credits on VM startup)
•  Credit limit (max amount of credits)

2015-12-09 Page 23

2 Philipp Leitner and Joel Scheuner

and f1.micro in Google Compute Engine (GCE). These instances share all
computing resources, including their CPU, with other tenants. Hence, they are
typically the cheapest available option in a cloud. Unsurprisingly, recent studies
have found that bursting instance types are particularly prone to performance
unreliability due to noisy neighbors and unpredictability of the scheduler [3,4].

However, in summer 2014, AWS has made the second generation of bursting
instance types publicly available, in the following referred to as the t2 family.
Unlike previous types and the o↵erings of competitors (which are typically best-
e↵ort oriented and consequently highly unpredictable), t2 types now operate on
two distinct performance levels, a peak and a baseline performance level. Each
instance has an account with credits for running on peak performance and drops
to baseline performance when its credits run out.

While this specific model is currently only available in AWS EC2, we assume
that other providers will soon follow with similar o↵erings. Hence, we provide
a first empirical and analytical study of the implications of this new instance
type family for practitioners. We introduce a basic model that formally captures
the performance behavior of these instances for analysis. Further, we empirically
study how t2 instance types compare in terms of performance to general-purpose
instance types and to the previous generation of bursting instance types. We
sketch a number of practical use cases and discuss the characteristics of applica-
tions for which t2 instances are the cheapest option. We empirically show that
general-purpose instances are more cost-e�cient for highly-loaded services. How-
ever, for services with an average utilization of 40% or less, t2 instances provide
vastly better performance per US dollar spent. We also show that t2 instances are
attractive for smaller, non-critical IO-bound services, such as small databases.
Finally, we discuss the basic idea of credit boosting, a simple scheme that allows
cloud customers to improve the performance-cost ratio of t2 instances.

2 Credit-Based Bursting Instance Types

As foundation for the remainder of this study, we now formally define the under-
lying model of credit-based bursting instance types, and explain how this model
is currently implemented in Amazon EC2.

2.1 Basic Model

Consider a cloud consumer who is renting a set I of bursting cloud instances.
Each instance i 2 I has a defined instance type it 2 T , where T is the set of ex-
isting bursting instance types (e.g., t2.micro). Each instance i 2 I can operate
on two defined CPU performance levels, a peak performance level sp(t) 2 R+

and a baseline performance level sb(t) 2 R+. Both, the peak and baseline per-
formance level are dependent on the concrete instance type. Further, we assume
performance levels to be defined by a positive real number, where lower numbers
represent better performance. That is, the performance level is assumed to repre-
sent the time it takes an instance to execute a defined benchmark task (e.g., find

2 Philipp Leitner and Joel Scheuner

and f1.micro in Google Compute Engine (GCE). These instances share all
computing resources, including their CPU, with other tenants. Hence, they are
typically the cheapest available option in a cloud. Unsurprisingly, recent studies
have found that bursting instance types are particularly prone to performance
unreliability due to noisy neighbors and unpredictability of the scheduler [3,4].

However, in summer 2014, AWS has made the second generation of bursting
instance types publicly available, in the following referred to as the t2 family.
Unlike previous types and the o↵erings of competitors (which are typically best-
e↵ort oriented and consequently highly unpredictable), t2 types now operate on
two distinct performance levels, a peak and a baseline performance level. Each
instance has an account with credits for running on peak performance and drops
to baseline performance when its credits run out.

While this specific model is currently only available in AWS EC2, we assume
that other providers will soon follow with similar o↵erings. Hence, we provide
a first empirical and analytical study of the implications of this new instance
type family for practitioners. We introduce a basic model that formally captures
the performance behavior of these instances for analysis. Further, we empirically
study how t2 instance types compare in terms of performance to general-purpose
instance types and to the previous generation of bursting instance types. We
sketch a number of practical use cases and discuss the characteristics of applica-
tions for which t2 instances are the cheapest option. We empirically show that
general-purpose instances are more cost-e�cient for highly-loaded services. How-
ever, for services with an average utilization of 40% or less, t2 instances provide
vastly better performance per US dollar spent. We also show that t2 instances are
attractive for smaller, non-critical IO-bound services, such as small databases.
Finally, we discuss the basic idea of credit boosting, a simple scheme that allows
cloud customers to improve the performance-cost ratio of t2 instances.

2 Credit-Based Bursting Instance Types

As foundation for the remainder of this study, we now formally define the under-
lying model of credit-based bursting instance types, and explain how this model
is currently implemented in Amazon EC2.

2.1 Basic Model

Consider a cloud consumer who is renting a set I of bursting cloud instances.
Each instance i 2 I has a defined instance type it 2 T , where T is the set of ex-
isting bursting instance types (e.g., t2.micro). Each instance i 2 I can operate
on two defined CPU performance levels, a peak performance level sp(t) 2 R+

and a baseline performance level sb(t) 2 R+. Both, the peak and baseline per-
formance level are dependent on the concrete instance type. Further, we assume
performance levels to be defined by a positive real number, where lower numbers
represent better performance. That is, the performance level is assumed to repre-
sent the time it takes an instance to execute a defined benchmark task (e.g., find

dollar spent. We also show that t2 instances are attractive
for smaller, non-critical IO-bound services, such as small
databases. Finally, we discuss the basic idea of credit boosting,
a simple scheme that allows cloud customers to improve the
performance-cost ratio of t2 instances.

II. CREDIT-BASED BURSTING INSTANCE TYPES

As foundation for the remainder of this study, we now
formally define the underlying model of credit-based burst-
ing instance types, and explain how this model is currently
implemented in Amazon EC2.

A. Basic Model
Consider a cloud consumer who is renting a set I of bursting

cloud instances. Each instance i ∈ I has a defined instance
type it ∈ T , where T is the set of available credit-based
bursting instance types (e.g., t2.micro). Each instance i ∈ I
can operate on two defined CPU performance levels, a peak
performance level sp(t) and a baseline performance level
sb(t), with sp(t), sb(t) ∈ R+. Both, the peak and baseline
performance level are dependent on the concrete instance type.
Further, we assume performance levels to be defined by a
positive real number (R+), where lower numbers represent
better performance. That is, the performance level is assumed
to represent the time it takes an instance to execute a defined
benchmark task (e.g., find all prime numbers between 0 and
10.000 using the Sieve of Eratosthenes). Generally, for all
instances, the peak performance level is substantially prefer-
able to the baseline performance level to the cloud consumer
(∀i ∈ I : sp(it) << sb(it)). At this point we ignore the fact
that different CPUs in practice perform differently for different
types of CPU operations (e.g., floating point arithmetics versus
integer arithmetics). Due to how credit-based bursting instance
types are technically implemented by cloud operators (see
Section II-B), this difference is of little concern for this study.

The applicable performance level at any point in time
depends on the amount of credits an instance currently has
available, defined as ic ∈ R+. An instance can operate at peak
performance level as long as it has a positive amount of credits
(ic > 0). Whenever an instance operates at peak performance
(the CPU is non-idle), its credits will deplete with a rate of
td ∈ N+ per hour. Simultaneously, its credits replenish with
a constant rate of tr ∈ N+ per hour as long as the instance
is running (i.e., not in the “stopped” or “terminated” state),
independently of instance usage. For practical reasons, the rate
of replenishment is typically substantially lower than the rate
of depletion (∀t ∈ T : tr << td). An instance is throttled
to baseline performance level if it has completely depleted its
credits.

Instances typically do not start with empty credit. Rather, in-
stances receive an initial amount of credits on startup ts ∈ N+,
which allows new instances to immediately operate at peak
performance for a predictable amount of time after startup.
Conversely, idle instances cannot accrue credits forever, as
the maximum amount of credits per instance is capped at
tm ∈ N+. For all instance types, this upper limit tm is

designed so that an instance can build up credits for up
to 24 hours at a time. As by definition the credit balance
can never deplete below 0 (instances cannot operate at peak
performance after fully depleting their credits), this means that
∀i ∈ I : 0 ≤ itc ≤ itm at any time.

Note that this process of credit depletion and replenishment
is continuously executed in the background by the cloud
provider. Credit depletion operates on a millisecond basis
and with fractional credits. That is, in practice, assuming a
freshly started instance i has an average CPU load of 50%
over its first hour of operation, the instance’s credit balance
will be ic = its − itd

2 + itr. Assuming that its > itd
2 , the

instance is guaranteed to be able to able to operate at a CPU
performance of sp(it) through the hour. However, given that
typically itd

2 > itr, the instance will use parts of its credits
in the process. In order to actually accumulate credits, the
average CPU utilization of the instance will need to be below
itr
itd

. We denote this utilization rate, which keeps the instance
credit account constant, as the standard instance utilization
tū. Finally, an instance has defined hourly costs c(t) ∈ R+,
which depend on its type and are represented as US dollars
per started billing time unit (BTU), e.g., one hour.

B. Implementation in Amazon EC2
This model is already implemented and publicly available

in the (at the time of writing) current generation of bursting
instance types (t2) in AWS EC2. Four different concrete in-
stance types that follow this model are available: t2.micro,
t2.small, t2.medium, and t2.large. In the following,
we focus on the former three instance types.

Name (t2.*) sp(t) sb(t) ts tm td tr tū
micro 2 20 30 144 60 6 10%
small 2 10 30 288 60 12 20%
medium 1 2.5 60 576 120 24 20%

Table I: Basic model parameters of the t2 instance type family
in AWS EC2.

All types are backed by the same Intel Xeon processors
with 2.5GHz standard CPU frequency and the possibility to
(for shorter terms) go up to a frequency of 3.3GHz. All of them
differ in the provided baseline performance, as well as in most
other model parameters. Table I summarizes the specifications
in the notation of our basic model. The information in this
table is largely based on the official EC2 documentation1.
The values given for sp(t) and sb(t) should be seen as
relative metrics, which only make sense in comparison to the
other performance values in this table. The values for ts and
tm represent credits, where each credit allows for using a
single CPU core for one minute at peak performance. That is,
given that the t2.medium instance type has two cores, fully
utilizing this instance for 1 minute uses twice as much credits
as the other instance types, hence the twice as large depletion
rate td. Both td and tr are given as hourly rates. Thus, a

1http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-instances.
html

dollar spent. We also show that t2 instances are attractive
for smaller, non-critical IO-bound services, such as small
databases. Finally, we discuss the basic idea of credit boosting,
a simple scheme that allows cloud customers to improve the
performance-cost ratio of t2 instances.

II. CREDIT-BASED BURSTING INSTANCE TYPES

As foundation for the remainder of this study, we now
formally define the underlying model of credit-based burst-
ing instance types, and explain how this model is currently
implemented in Amazon EC2.

A. Basic Model
Consider a cloud consumer who is renting a set I of bursting

cloud instances. Each instance i ∈ I has a defined instance
type it ∈ T , where T is the set of available credit-based
bursting instance types (e.g., t2.micro). Each instance i ∈ I
can operate on two defined CPU performance levels, a peak
performance level sp(t) and a baseline performance level
sb(t), with sp(t), sb(t) ∈ R+. Both, the peak and baseline
performance level are dependent on the concrete instance type.
Further, we assume performance levels to be defined by a
positive real number (R+), where lower numbers represent
better performance. That is, the performance level is assumed
to represent the time it takes an instance to execute a defined
benchmark task (e.g., find all prime numbers between 0 and
10.000 using the Sieve of Eratosthenes). Generally, for all
instances, the peak performance level is substantially prefer-
able to the baseline performance level to the cloud consumer
(∀i ∈ I : sp(it) << sb(it)). At this point we ignore the fact
that different CPUs in practice perform differently for different
types of CPU operations (e.g., floating point arithmetics versus
integer arithmetics). Due to how credit-based bursting instance
types are technically implemented by cloud operators (see
Section II-B), this difference is of little concern for this study.

The applicable performance level at any point in time
depends on the amount of credits an instance currently has
available, defined as ic ∈ R+. An instance can operate at peak
performance level as long as it has a positive amount of credits
(ic > 0). Whenever an instance operates at peak performance
(the CPU is non-idle), its credits will deplete with a rate of
td ∈ N+ per hour. Simultaneously, its credits replenish with
a constant rate of tr ∈ N+ per hour as long as the instance
is running (i.e., not in the “stopped” or “terminated” state),
independently of instance usage. For practical reasons, the rate
of replenishment is typically substantially lower than the rate
of depletion (∀t ∈ T : tr << td). An instance is throttled
to baseline performance level if it has completely depleted its
credits.

Instances typically do not start with empty credit. Rather, in-
stances receive an initial amount of credits on startup ts ∈ N+,
which allows new instances to immediately operate at peak
performance for a predictable amount of time after startup.
Conversely, idle instances cannot accrue credits forever, as
the maximum amount of credits per instance is capped at
tm ∈ N+. For all instance types, this upper limit tm is

designed so that an instance can build up credits for up
to 24 hours at a time. As by definition the credit balance
can never deplete below 0 (instances cannot operate at peak
performance after fully depleting their credits), this means that
∀i ∈ I : 0 ≤ itc ≤ itm at any time.

Note that this process of credit depletion and replenishment
is continuously executed in the background by the cloud
provider. Credit depletion operates on a millisecond basis
and with fractional credits. That is, in practice, assuming a
freshly started instance i has an average CPU load of 50%
over its first hour of operation, the instance’s credit balance
will be ic = its − itd

2 + itr. Assuming that its > itd
2 , the

instance is guaranteed to be able to able to operate at a CPU
performance of sp(it) through the hour. However, given that
typically itd

2 > itr, the instance will use parts of its credits
in the process. In order to actually accumulate credits, the
average CPU utilization of the instance will need to be below
itr
itd

. We denote this utilization rate, which keeps the instance
credit account constant, as the standard instance utilization
tū. Finally, an instance has defined hourly costs c(t) ∈ R+,
which depend on its type and are represented as US dollars
per started billing time unit (BTU), e.g., one hour.

B. Implementation in Amazon EC2
This model is already implemented and publicly available

in the (at the time of writing) current generation of bursting
instance types (t2) in AWS EC2. Four different concrete in-
stance types that follow this model are available: t2.micro,
t2.small, t2.medium, and t2.large. In the following,
we focus on the former three instance types.

Name (t2.*) sp(t) sb(t) ts tm td tr tū
micro 2 20 30 144 60 6 10%
small 2 10 30 288 60 12 20%
medium 1 2.5 60 576 120 24 20%

Table I: Basic model parameters of the t2 instance type family
in AWS EC2.

All types are backed by the same Intel Xeon processors
with 2.5GHz standard CPU frequency and the possibility to
(for shorter terms) go up to a frequency of 3.3GHz. All of them
differ in the provided baseline performance, as well as in most
other model parameters. Table I summarizes the specifications
in the notation of our basic model. The information in this
table is largely based on the official EC2 documentation1.
The values given for sp(t) and sb(t) should be seen as
relative metrics, which only make sense in comparison to the
other performance values in this table. The values for ts and
tm represent credits, where each credit allows for using a
single CPU core for one minute at peak performance. That is,
given that the t2.medium instance type has two cores, fully
utilizing this instance for 1 minute uses twice as much credits
as the other instance types, hence the twice as large depletion
rate td. Both td and tr are given as hourly rates. Thus, a

1http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-instances.
html

Lower number represents
better performance

dollar spent. We also show that t2 instances are attractive
for smaller, non-critical IO-bound services, such as small
databases. Finally, we discuss the basic idea of credit boosting,
a simple scheme that allows cloud customers to improve the
performance-cost ratio of t2 instances.

II. CREDIT-BASED BURSTING INSTANCE TYPES

As foundation for the remainder of this study, we now
formally define the underlying model of credit-based burst-
ing instance types, and explain how this model is currently
implemented in Amazon EC2.

A. Basic Model
Consider a cloud consumer who is renting a set I of bursting

cloud instances. Each instance i ∈ I has a defined instance
type it ∈ T , where T is the set of available credit-based
bursting instance types (e.g., t2.micro). Each instance i ∈ I
can operate on two defined CPU performance levels, a peak
performance level sp(t) and a baseline performance level
sb(t), with sp(t), sb(t) ∈ R+. Both, the peak and baseline
performance level are dependent on the concrete instance type.
Further, we assume performance levels to be defined by a
positive real number (R+), where lower numbers represent
better performance. That is, the performance level is assumed
to represent the time it takes an instance to execute a defined
benchmark task (e.g., find all prime numbers between 0 and
10.000 using the Sieve of Eratosthenes). Generally, for all
instances, the peak performance level is substantially prefer-
able to the baseline performance level to the cloud consumer
(∀i ∈ I : sp(it) << sb(it)). At this point we ignore the fact
that different CPUs in practice perform differently for different
types of CPU operations (e.g., floating point arithmetics versus
integer arithmetics). Due to how credit-based bursting instance
types are technically implemented by cloud operators (see
Section II-B), this difference is of little concern for this study.

The applicable performance level at any point in time
depends on the amount of credits an instance currently has
available, defined as ic ∈ R+. An instance can operate at peak
performance level as long as it has a positive amount of credits
(ic > 0). Whenever an instance operates at peak performance
(the CPU is non-idle), its credits will deplete with a rate of
td ∈ N+ per hour. Simultaneously, its credits replenish with
a constant rate of tr ∈ N+ per hour as long as the instance
is running (i.e., not in the “stopped” or “terminated” state),
independently of instance usage. For practical reasons, the rate
of replenishment is typically substantially lower than the rate
of depletion (∀t ∈ T : tr << td). An instance is throttled
to baseline performance level if it has completely depleted its
credits.

Instances typically do not start with empty credit. Rather, in-
stances receive an initial amount of credits on startup ts ∈ N+,
which allows new instances to immediately operate at peak
performance for a predictable amount of time after startup.
Conversely, idle instances cannot accrue credits forever, as
the maximum amount of credits per instance is capped at
tm ∈ N+. For all instance types, this upper limit tm is

designed so that an instance can build up credits for up
to 24 hours at a time. As by definition the credit balance
can never deplete below 0 (instances cannot operate at peak
performance after fully depleting their credits), this means that
∀i ∈ I : 0 ≤ itc ≤ itm at any time.

Note that this process of credit depletion and replenishment
is continuously executed in the background by the cloud
provider. Credit depletion operates on a millisecond basis
and with fractional credits. That is, in practice, assuming a
freshly started instance i has an average CPU load of 50%
over its first hour of operation, the instance’s credit balance
will be ic = its − itd

2 + itr. Assuming that its > itd
2 , the

instance is guaranteed to be able to able to operate at a CPU
performance of sp(it) through the hour. However, given that
typically itd

2 > itr, the instance will use parts of its credits
in the process. In order to actually accumulate credits, the
average CPU utilization of the instance will need to be below
itr
itd

. We denote this utilization rate, which keeps the instance
credit account constant, as the standard instance utilization
tū. Finally, an instance has defined hourly costs c(t) ∈ R+,
which depend on its type and are represented as US dollars
per started billing time unit (BTU), e.g., one hour.

B. Implementation in Amazon EC2
This model is already implemented and publicly available

in the (at the time of writing) current generation of bursting
instance types (t2) in AWS EC2. Four different concrete in-
stance types that follow this model are available: t2.micro,
t2.small, t2.medium, and t2.large. In the following,
we focus on the former three instance types.

Name (t2.*) sp(t) sb(t) ts tm td tr tū
micro 2 20 30 144 60 6 10%
small 2 10 30 288 60 12 20%
medium 1 2.5 60 576 120 24 20%

Table I: Basic model parameters of the t2 instance type family
in AWS EC2.

All types are backed by the same Intel Xeon processors
with 2.5GHz standard CPU frequency and the possibility to
(for shorter terms) go up to a frequency of 3.3GHz. All of them
differ in the provided baseline performance, as well as in most
other model parameters. Table I summarizes the specifications
in the notation of our basic model. The information in this
table is largely based on the official EC2 documentation1.
The values given for sp(t) and sb(t) should be seen as
relative metrics, which only make sense in comparison to the
other performance values in this table. The values for ts and
tm represent credits, where each credit allows for using a
single CPU core for one minute at peak performance. That is,
given that the t2.medium instance type has two cores, fully
utilizing this instance for 1 minute uses twice as much credits
as the other instance types, hence the twice as large depletion
rate td. Both td and tr are given as hourly rates. Thus, a

1http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-instances.
html

dollar spent. We also show that t2 instances are attractive
for smaller, non-critical IO-bound services, such as small
databases. Finally, we discuss the basic idea of credit boosting,
a simple scheme that allows cloud customers to improve the
performance-cost ratio of t2 instances.

II. CREDIT-BASED BURSTING INSTANCE TYPES

As foundation for the remainder of this study, we now
formally define the underlying model of credit-based burst-
ing instance types, and explain how this model is currently
implemented in Amazon EC2.

A. Basic Model
Consider a cloud consumer who is renting a set I of bursting

cloud instances. Each instance i ∈ I has a defined instance
type it ∈ T , where T is the set of available credit-based
bursting instance types (e.g., t2.micro). Each instance i ∈ I
can operate on two defined CPU performance levels, a peak
performance level sp(t) and a baseline performance level
sb(t), with sp(t), sb(t) ∈ R+. Both, the peak and baseline
performance level are dependent on the concrete instance type.
Further, we assume performance levels to be defined by a
positive real number (R+), where lower numbers represent
better performance. That is, the performance level is assumed
to represent the time it takes an instance to execute a defined
benchmark task (e.g., find all prime numbers between 0 and
10.000 using the Sieve of Eratosthenes). Generally, for all
instances, the peak performance level is substantially prefer-
able to the baseline performance level to the cloud consumer
(∀i ∈ I : sp(it) << sb(it)). At this point we ignore the fact
that different CPUs in practice perform differently for different
types of CPU operations (e.g., floating point arithmetics versus
integer arithmetics). Due to how credit-based bursting instance
types are technically implemented by cloud operators (see
Section II-B), this difference is of little concern for this study.

The applicable performance level at any point in time
depends on the amount of credits an instance currently has
available, defined as ic ∈ R+. An instance can operate at peak
performance level as long as it has a positive amount of credits
(ic > 0). Whenever an instance operates at peak performance
(the CPU is non-idle), its credits will deplete with a rate of
td ∈ N+ per hour. Simultaneously, its credits replenish with
a constant rate of tr ∈ N+ per hour as long as the instance
is running (i.e., not in the “stopped” or “terminated” state),
independently of instance usage. For practical reasons, the rate
of replenishment is typically substantially lower than the rate
of depletion (∀t ∈ T : tr << td). An instance is throttled
to baseline performance level if it has completely depleted its
credits.

Instances typically do not start with empty credit. Rather, in-
stances receive an initial amount of credits on startup ts ∈ N+,
which allows new instances to immediately operate at peak
performance for a predictable amount of time after startup.
Conversely, idle instances cannot accrue credits forever, as
the maximum amount of credits per instance is capped at
tm ∈ N+. For all instance types, this upper limit tm is

designed so that an instance can build up credits for up
to 24 hours at a time. As by definition the credit balance
can never deplete below 0 (instances cannot operate at peak
performance after fully depleting their credits), this means that
∀i ∈ I : 0 ≤ itc ≤ itm at any time.

Note that this process of credit depletion and replenishment
is continuously executed in the background by the cloud
provider. Credit depletion operates on a millisecond basis
and with fractional credits. That is, in practice, assuming a
freshly started instance i has an average CPU load of 50%
over its first hour of operation, the instance’s credit balance
will be ic = its − itd

2 + itr. Assuming that its > itd
2 , the

instance is guaranteed to be able to able to operate at a CPU
performance of sp(it) through the hour. However, given that
typically itd

2 > itr, the instance will use parts of its credits
in the process. In order to actually accumulate credits, the
average CPU utilization of the instance will need to be below
itr
itd

. We denote this utilization rate, which keeps the instance
credit account constant, as the standard instance utilization
tū. Finally, an instance has defined hourly costs c(t) ∈ R+,
which depend on its type and are represented as US dollars
per started billing time unit (BTU), e.g., one hour.

B. Implementation in Amazon EC2
This model is already implemented and publicly available

in the (at the time of writing) current generation of bursting
instance types (t2) in AWS EC2. Four different concrete in-
stance types that follow this model are available: t2.micro,
t2.small, t2.medium, and t2.large. In the following,
we focus on the former three instance types.

Name (t2.*) sp(t) sb(t) ts tm td tr tū
micro 2 20 30 144 60 6 10%
small 2 10 30 288 60 12 20%
medium 1 2.5 60 576 120 24 20%

Table I: Basic model parameters of the t2 instance type family
in AWS EC2.

All types are backed by the same Intel Xeon processors
with 2.5GHz standard CPU frequency and the possibility to
(for shorter terms) go up to a frequency of 3.3GHz. All of them
differ in the provided baseline performance, as well as in most
other model parameters. Table I summarizes the specifications
in the notation of our basic model. The information in this
table is largely based on the official EC2 documentation1.
The values given for sp(t) and sb(t) should be seen as
relative metrics, which only make sense in comparison to the
other performance values in this table. The values for ts and
tm represent credits, where each credit allows for using a
single CPU core for one minute at peak performance. That is,
given that the t2.medium instance type has two cores, fully
utilizing this instance for 1 minute uses twice as much credits
as the other instance types, hence the twice as large depletion
rate td. Both td and tr are given as hourly rates. Thus, a

1http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-instances.
html

dollar spent. We also show that t2 instances are attractive
for smaller, non-critical IO-bound services, such as small
databases. Finally, we discuss the basic idea of credit boosting,
a simple scheme that allows cloud customers to improve the
performance-cost ratio of t2 instances.

II. CREDIT-BASED BURSTING INSTANCE TYPES

As foundation for the remainder of this study, we now
formally define the underlying model of credit-based burst-
ing instance types, and explain how this model is currently
implemented in Amazon EC2.

A. Basic Model
Consider a cloud consumer who is renting a set I of bursting

cloud instances. Each instance i ∈ I has a defined instance
type it ∈ T , where T is the set of available credit-based
bursting instance types (e.g., t2.micro). Each instance i ∈ I
can operate on two defined CPU performance levels, a peak
performance level sp(t) and a baseline performance level
sb(t), with sp(t), sb(t) ∈ R+. Both, the peak and baseline
performance level are dependent on the concrete instance type.
Further, we assume performance levels to be defined by a
positive real number (R+), where lower numbers represent
better performance. That is, the performance level is assumed
to represent the time it takes an instance to execute a defined
benchmark task (e.g., find all prime numbers between 0 and
10.000 using the Sieve of Eratosthenes). Generally, for all
instances, the peak performance level is substantially prefer-
able to the baseline performance level to the cloud consumer
(∀i ∈ I : sp(it) << sb(it)). At this point we ignore the fact
that different CPUs in practice perform differently for different
types of CPU operations (e.g., floating point arithmetics versus
integer arithmetics). Due to how credit-based bursting instance
types are technically implemented by cloud operators (see
Section II-B), this difference is of little concern for this study.

The applicable performance level at any point in time
depends on the amount of credits an instance currently has
available, defined as ic ∈ R+. An instance can operate at peak
performance level as long as it has a positive amount of credits
(ic > 0). Whenever an instance operates at peak performance
(the CPU is non-idle), its credits will deplete with a rate of
td ∈ N+ per hour. Simultaneously, its credits replenish with
a constant rate of tr ∈ N+ per hour as long as the instance
is running (i.e., not in the “stopped” or “terminated” state),
independently of instance usage. For practical reasons, the rate
of replenishment is typically substantially lower than the rate
of depletion (∀t ∈ T : tr << td). An instance is throttled
to baseline performance level if it has completely depleted its
credits.

Instances typically do not start with empty credit. Rather, in-
stances receive an initial amount of credits on startup ts ∈ N+,
which allows new instances to immediately operate at peak
performance for a predictable amount of time after startup.
Conversely, idle instances cannot accrue credits forever, as
the maximum amount of credits per instance is capped at
tm ∈ N+. For all instance types, this upper limit tm is

designed so that an instance can build up credits for up
to 24 hours at a time. As by definition the credit balance
can never deplete below 0 (instances cannot operate at peak
performance after fully depleting their credits), this means that
∀i ∈ I : 0 ≤ itc ≤ itm at any time.

Note that this process of credit depletion and replenishment
is continuously executed in the background by the cloud
provider. Credit depletion operates on a millisecond basis
and with fractional credits. That is, in practice, assuming a
freshly started instance i has an average CPU load of 50%
over its first hour of operation, the instance’s credit balance
will be ic = its − itd

2 + itr. Assuming that its > itd
2 , the

instance is guaranteed to be able to able to operate at a CPU
performance of sp(it) through the hour. However, given that
typically itd

2 > itr, the instance will use parts of its credits
in the process. In order to actually accumulate credits, the
average CPU utilization of the instance will need to be below
itr
itd

. We denote this utilization rate, which keeps the instance
credit account constant, as the standard instance utilization
tū. Finally, an instance has defined hourly costs c(t) ∈ R+,
which depend on its type and are represented as US dollars
per started billing time unit (BTU), e.g., one hour.

B. Implementation in Amazon EC2
This model is already implemented and publicly available

in the (at the time of writing) current generation of bursting
instance types (t2) in AWS EC2. Four different concrete in-
stance types that follow this model are available: t2.micro,
t2.small, t2.medium, and t2.large. In the following,
we focus on the former three instance types.

Name (t2.*) sp(t) sb(t) ts tm td tr tū
micro 2 20 30 144 60 6 10%
small 2 10 30 288 60 12 20%
medium 1 2.5 60 576 120 24 20%

Table I: Basic model parameters of the t2 instance type family
in AWS EC2.

All types are backed by the same Intel Xeon processors
with 2.5GHz standard CPU frequency and the possibility to
(for shorter terms) go up to a frequency of 3.3GHz. All of them
differ in the provided baseline performance, as well as in most
other model parameters. Table I summarizes the specifications
in the notation of our basic model. The information in this
table is largely based on the official EC2 documentation1.
The values given for sp(t) and sb(t) should be seen as
relative metrics, which only make sense in comparison to the
other performance values in this table. The values for ts and
tm represent credits, where each credit allows for using a
single CPU core for one minute at peak performance. That is,
given that the t2.medium instance type has two cores, fully
utilizing this instance for 1 minute uses twice as much credits
as the other instance types, hence the twice as large depletion
rate td. Both td and tr are given as hourly rates. Thus, a

1http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-instances.
html

dollar spent. We also show that t2 instances are attractive
for smaller, non-critical IO-bound services, such as small
databases. Finally, we discuss the basic idea of credit boosting,
a simple scheme that allows cloud customers to improve the
performance-cost ratio of t2 instances.

II. CREDIT-BASED BURSTING INSTANCE TYPES

As foundation for the remainder of this study, we now
formally define the underlying model of credit-based burst-
ing instance types, and explain how this model is currently
implemented in Amazon EC2.

A. Basic Model
Consider a cloud consumer who is renting a set I of bursting

cloud instances. Each instance i ∈ I has a defined instance
type it ∈ T , where T is the set of available credit-based
bursting instance types (e.g., t2.micro). Each instance i ∈ I
can operate on two defined CPU performance levels, a peak
performance level sp(t) and a baseline performance level
sb(t), with sp(t), sb(t) ∈ R+. Both, the peak and baseline
performance level are dependent on the concrete instance type.
Further, we assume performance levels to be defined by a
positive real number (R+), where lower numbers represent
better performance. That is, the performance level is assumed
to represent the time it takes an instance to execute a defined
benchmark task (e.g., find all prime numbers between 0 and
10.000 using the Sieve of Eratosthenes). Generally, for all
instances, the peak performance level is substantially prefer-
able to the baseline performance level to the cloud consumer
(∀i ∈ I : sp(it) << sb(it)). At this point we ignore the fact
that different CPUs in practice perform differently for different
types of CPU operations (e.g., floating point arithmetics versus
integer arithmetics). Due to how credit-based bursting instance
types are technically implemented by cloud operators (see
Section II-B), this difference is of little concern for this study.

The applicable performance level at any point in time
depends on the amount of credits an instance currently has
available, defined as ic ∈ R+. An instance can operate at peak
performance level as long as it has a positive amount of credits
(ic > 0). Whenever an instance operates at peak performance
(the CPU is non-idle), its credits will deplete with a rate of
td ∈ N+ per hour. Simultaneously, its credits replenish with
a constant rate of tr ∈ N+ per hour as long as the instance
is running (i.e., not in the “stopped” or “terminated” state),
independently of instance usage. For practical reasons, the rate
of replenishment is typically substantially lower than the rate
of depletion (∀t ∈ T : tr << td). An instance is throttled
to baseline performance level if it has completely depleted its
credits.

Instances typically do not start with empty credit. Rather, in-
stances receive an initial amount of credits on startup ts ∈ N+,
which allows new instances to immediately operate at peak
performance for a predictable amount of time after startup.
Conversely, idle instances cannot accrue credits forever, as
the maximum amount of credits per instance is capped at
tm ∈ N+. For all instance types, this upper limit tm is

designed so that an instance can build up credits for up
to 24 hours at a time. As by definition the credit balance
can never deplete below 0 (instances cannot operate at peak
performance after fully depleting their credits), this means that
∀i ∈ I : 0 ≤ itc ≤ itm at any time.

Note that this process of credit depletion and replenishment
is continuously executed in the background by the cloud
provider. Credit depletion operates on a millisecond basis
and with fractional credits. That is, in practice, assuming a
freshly started instance i has an average CPU load of 50%
over its first hour of operation, the instance’s credit balance
will be ic = its − itd

2 + itr. Assuming that its > itd
2 , the

instance is guaranteed to be able to able to operate at a CPU
performance of sp(it) through the hour. However, given that
typically itd

2 > itr, the instance will use parts of its credits
in the process. In order to actually accumulate credits, the
average CPU utilization of the instance will need to be below
itr
itd

. We denote this utilization rate, which keeps the instance
credit account constant, as the standard instance utilization
tū. Finally, an instance has defined hourly costs c(t) ∈ R+,
which depend on its type and are represented as US dollars
per started billing time unit (BTU), e.g., one hour.

B. Implementation in Amazon EC2
This model is already implemented and publicly available

in the (at the time of writing) current generation of bursting
instance types (t2) in AWS EC2. Four different concrete in-
stance types that follow this model are available: t2.micro,
t2.small, t2.medium, and t2.large. In the following,
we focus on the former three instance types.

Name (t2.*) sp(t) sb(t) ts tm td tr tū
micro 2 20 30 144 60 6 10%
small 2 10 30 288 60 12 20%
medium 1 2.5 60 576 120 24 20%

Table I: Basic model parameters of the t2 instance type family
in AWS EC2.

All types are backed by the same Intel Xeon processors
with 2.5GHz standard CPU frequency and the possibility to
(for shorter terms) go up to a frequency of 3.3GHz. All of them
differ in the provided baseline performance, as well as in most
other model parameters. Table I summarizes the specifications
in the notation of our basic model. The information in this
table is largely based on the official EC2 documentation1.
The values given for sp(t) and sb(t) should be seen as
relative metrics, which only make sense in comparison to the
other performance values in this table. The values for ts and
tm represent credits, where each credit allows for using a
single CPU core for one minute at peak performance. That is,
given that the t2.medium instance type has two cores, fully
utilizing this instance for 1 minute uses twice as much credits
as the other instance types, hence the twice as large depletion
rate td. Both td and tr are given as hourly rates. Thus, a

1http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-instances.
html

dollar spent. We also show that t2 instances are attractive
for smaller, non-critical IO-bound services, such as small
databases. Finally, we discuss the basic idea of credit boosting,
a simple scheme that allows cloud customers to improve the
performance-cost ratio of t2 instances.

II. CREDIT-BASED BURSTING INSTANCE TYPES

As foundation for the remainder of this study, we now
formally define the underlying model of credit-based burst-
ing instance types, and explain how this model is currently
implemented in Amazon EC2.

A. Basic Model
Consider a cloud consumer who is renting a set I of bursting

cloud instances. Each instance i ∈ I has a defined instance
type it ∈ T , where T is the set of available credit-based
bursting instance types (e.g., t2.micro). Each instance i ∈ I
can operate on two defined CPU performance levels, a peak
performance level sp(t) and a baseline performance level
sb(t), with sp(t), sb(t) ∈ R+. Both, the peak and baseline
performance level are dependent on the concrete instance type.
Further, we assume performance levels to be defined by a
positive real number (R+), where lower numbers represent
better performance. That is, the performance level is assumed
to represent the time it takes an instance to execute a defined
benchmark task (e.g., find all prime numbers between 0 and
10.000 using the Sieve of Eratosthenes). Generally, for all
instances, the peak performance level is substantially prefer-
able to the baseline performance level to the cloud consumer
(∀i ∈ I : sp(it) << sb(it)). At this point we ignore the fact
that different CPUs in practice perform differently for different
types of CPU operations (e.g., floating point arithmetics versus
integer arithmetics). Due to how credit-based bursting instance
types are technically implemented by cloud operators (see
Section II-B), this difference is of little concern for this study.

The applicable performance level at any point in time
depends on the amount of credits an instance currently has
available, defined as ic ∈ R+. An instance can operate at peak
performance level as long as it has a positive amount of credits
(ic > 0). Whenever an instance operates at peak performance
(the CPU is non-idle), its credits will deplete with a rate of
td ∈ N+ per hour. Simultaneously, its credits replenish with
a constant rate of tr ∈ N+ per hour as long as the instance
is running (i.e., not in the “stopped” or “terminated” state),
independently of instance usage. For practical reasons, the rate
of replenishment is typically substantially lower than the rate
of depletion (∀t ∈ T : tr << td). An instance is throttled
to baseline performance level if it has completely depleted its
credits.

Instances typically do not start with empty credit. Rather, in-
stances receive an initial amount of credits on startup ts ∈ N+,
which allows new instances to immediately operate at peak
performance for a predictable amount of time after startup.
Conversely, idle instances cannot accrue credits forever, as
the maximum amount of credits per instance is capped at
tm ∈ N+. For all instance types, this upper limit tm is

designed so that an instance can build up credits for up
to 24 hours at a time. As by definition the credit balance
can never deplete below 0 (instances cannot operate at peak
performance after fully depleting their credits), this means that
∀i ∈ I : 0 ≤ itc ≤ itm at any time.

Note that this process of credit depletion and replenishment
is continuously executed in the background by the cloud
provider. Credit depletion operates on a millisecond basis
and with fractional credits. That is, in practice, assuming a
freshly started instance i has an average CPU load of 50%
over its first hour of operation, the instance’s credit balance
will be ic = its − itd

2 + itr. Assuming that its > itd
2 , the

instance is guaranteed to be able to able to operate at a CPU
performance of sp(it) through the hour. However, given that
typically itd

2 > itr, the instance will use parts of its credits
in the process. In order to actually accumulate credits, the
average CPU utilization of the instance will need to be below
itr
itd

. We denote this utilization rate, which keeps the instance
credit account constant, as the standard instance utilization
tū. Finally, an instance has defined hourly costs c(t) ∈ R+,
which depend on its type and are represented as US dollars
per started billing time unit (BTU), e.g., one hour.

B. Implementation in Amazon EC2
This model is already implemented and publicly available

in the (at the time of writing) current generation of bursting
instance types (t2) in AWS EC2. Four different concrete in-
stance types that follow this model are available: t2.micro,
t2.small, t2.medium, and t2.large. In the following,
we focus on the former three instance types.

Name (t2.*) sp(t) sb(t) ts tm td tr tū
micro 2 20 30 144 60 6 10%
small 2 10 30 288 60 12 20%
medium 1 2.5 60 576 120 24 20%

Table I: Basic model parameters of the t2 instance type family
in AWS EC2.

All types are backed by the same Intel Xeon processors
with 2.5GHz standard CPU frequency and the possibility to
(for shorter terms) go up to a frequency of 3.3GHz. All of them
differ in the provided baseline performance, as well as in most
other model parameters. Table I summarizes the specifications
in the notation of our basic model. The information in this
table is largely based on the official EC2 documentation1.
The values given for sp(t) and sb(t) should be seen as
relative metrics, which only make sense in comparison to the
other performance values in this table. The values for ts and
tm represent credits, where each credit allows for using a
single CPU core for one minute at peak performance. That is,
given that the t2.medium instance type has two cores, fully
utilizing this instance for 1 minute uses twice as much credits
as the other instance types, hence the twice as large depletion
rate td. Both td and tr are given as hourly rates. Thus, a

1http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-instances.
html

Department of Informatics – s.e.a.l.

software evolution & architecture lab

Formal Model – Basic Definitions (2)

•  Standard Instance Utilization (ū)
(i.e., utilization rate that keeps the
instance credit account constant)

•  Utilization level
(i.e., percentage of time a user wants
to operate a bursting instance at peak
performance level)

•  Hourly costs (US $ per started billing time unit)

•  Arithmetic mean of all 50 benchmark observations

•  Relative standard deviation in percent

2015-12-09 Page 24

dollar spent. We also show that t2 instances are attractive
for smaller, non-critical IO-bound services, such as small
databases. Finally, we discuss the basic idea of credit boosting,
a simple scheme that allows cloud customers to improve the
performance-cost ratio of t2 instances.

II. CREDIT-BASED BURSTING INSTANCE TYPES

As foundation for the remainder of this study, we now
formally define the underlying model of credit-based burst-
ing instance types, and explain how this model is currently
implemented in Amazon EC2.

A. Basic Model
Consider a cloud consumer who is renting a set I of bursting

cloud instances. Each instance i ∈ I has a defined instance
type it ∈ T , where T is the set of available credit-based
bursting instance types (e.g., t2.micro). Each instance i ∈ I
can operate on two defined CPU performance levels, a peak
performance level sp(t) and a baseline performance level
sb(t), with sp(t), sb(t) ∈ R+. Both, the peak and baseline
performance level are dependent on the concrete instance type.
Further, we assume performance levels to be defined by a
positive real number (R+), where lower numbers represent
better performance. That is, the performance level is assumed
to represent the time it takes an instance to execute a defined
benchmark task (e.g., find all prime numbers between 0 and
10.000 using the Sieve of Eratosthenes). Generally, for all
instances, the peak performance level is substantially prefer-
able to the baseline performance level to the cloud consumer
(∀i ∈ I : sp(it) << sb(it)). At this point we ignore the fact
that different CPUs in practice perform differently for different
types of CPU operations (e.g., floating point arithmetics versus
integer arithmetics). Due to how credit-based bursting instance
types are technically implemented by cloud operators (see
Section II-B), this difference is of little concern for this study.

The applicable performance level at any point in time
depends on the amount of credits an instance currently has
available, defined as ic ∈ R+. An instance can operate at peak
performance level as long as it has a positive amount of credits
(ic > 0). Whenever an instance operates at peak performance
(the CPU is non-idle), its credits will deplete with a rate of
td ∈ N+ per hour. Simultaneously, its credits replenish with
a constant rate of tr ∈ N+ per hour as long as the instance
is running (i.e., not in the “stopped” or “terminated” state),
independently of instance usage. For practical reasons, the rate
of replenishment is typically substantially lower than the rate
of depletion (∀t ∈ T : tr << td). An instance is throttled
to baseline performance level if it has completely depleted its
credits.

Instances typically do not start with empty credit. Rather, in-
stances receive an initial amount of credits on startup ts ∈ N+,
which allows new instances to immediately operate at peak
performance for a predictable amount of time after startup.
Conversely, idle instances cannot accrue credits forever, as
the maximum amount of credits per instance is capped at
tm ∈ N+. For all instance types, this upper limit tm is

designed so that an instance can build up credits for up
to 24 hours at a time. As by definition the credit balance
can never deplete below 0 (instances cannot operate at peak
performance after fully depleting their credits), this means that
∀i ∈ I : 0 ≤ itc ≤ itm at any time.

Note that this process of credit depletion and replenishment
is continuously executed in the background by the cloud
provider. Credit depletion operates on a millisecond basis
and with fractional credits. That is, in practice, assuming a
freshly started instance i has an average CPU load of 50%
over its first hour of operation, the instance’s credit balance
will be ic = its − itd

2 + itr. Assuming that its > itd
2 , the

instance is guaranteed to be able to able to operate at a CPU
performance of sp(it) through the hour. However, given that
typically itd

2 > itr, the instance will use parts of its credits
in the process. In order to actually accumulate credits, the
average CPU utilization of the instance will need to be below
itr
itd

. We denote this utilization rate, which keeps the instance
credit account constant, as the standard instance utilization
tū. Finally, an instance has defined hourly costs c(t) ∈ R+,
which depend on its type and are represented as US dollars
per started billing time unit (BTU), e.g., one hour.

B. Implementation in Amazon EC2
This model is already implemented and publicly available

in the (at the time of writing) current generation of bursting
instance types (t2) in AWS EC2. Four different concrete in-
stance types that follow this model are available: t2.micro,
t2.small, t2.medium, and t2.large. In the following,
we focus on the former three instance types.

Name (t2.*) sp(t) sb(t) ts tm td tr tū
micro 2 20 30 144 60 6 10%
small 2 10 30 288 60 12 20%
medium 1 2.5 60 576 120 24 20%

Table I: Basic model parameters of the t2 instance type family
in AWS EC2.

All types are backed by the same Intel Xeon processors
with 2.5GHz standard CPU frequency and the possibility to
(for shorter terms) go up to a frequency of 3.3GHz. All of them
differ in the provided baseline performance, as well as in most
other model parameters. Table I summarizes the specifications
in the notation of our basic model. The information in this
table is largely based on the official EC2 documentation1.
The values given for sp(t) and sb(t) should be seen as
relative metrics, which only make sense in comparison to the
other performance values in this table. The values for ts and
tm represent credits, where each credit allows for using a
single CPU core for one minute at peak performance. That is,
given that the t2.medium instance type has two cores, fully
utilizing this instance for 1 minute uses twice as much credits
as the other instance types, hence the twice as large depletion
rate td. Both td and tr are given as hourly rates. Thus, a

1http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-instances.
html

dollar spent. We also show that t2 instances are attractive
for smaller, non-critical IO-bound services, such as small
databases. Finally, we discuss the basic idea of credit boosting,
a simple scheme that allows cloud customers to improve the
performance-cost ratio of t2 instances.

II. CREDIT-BASED BURSTING INSTANCE TYPES

As foundation for the remainder of this study, we now
formally define the underlying model of credit-based burst-
ing instance types, and explain how this model is currently
implemented in Amazon EC2.

A. Basic Model
Consider a cloud consumer who is renting a set I of bursting

cloud instances. Each instance i ∈ I has a defined instance
type it ∈ T , where T is the set of available credit-based
bursting instance types (e.g., t2.micro). Each instance i ∈ I
can operate on two defined CPU performance levels, a peak
performance level sp(t) and a baseline performance level
sb(t), with sp(t), sb(t) ∈ R+. Both, the peak and baseline
performance level are dependent on the concrete instance type.
Further, we assume performance levels to be defined by a
positive real number (R+), where lower numbers represent
better performance. That is, the performance level is assumed
to represent the time it takes an instance to execute a defined
benchmark task (e.g., find all prime numbers between 0 and
10.000 using the Sieve of Eratosthenes). Generally, for all
instances, the peak performance level is substantially prefer-
able to the baseline performance level to the cloud consumer
(∀i ∈ I : sp(it) << sb(it)). At this point we ignore the fact
that different CPUs in practice perform differently for different
types of CPU operations (e.g., floating point arithmetics versus
integer arithmetics). Due to how credit-based bursting instance
types are technically implemented by cloud operators (see
Section II-B), this difference is of little concern for this study.

The applicable performance level at any point in time
depends on the amount of credits an instance currently has
available, defined as ic ∈ R+. An instance can operate at peak
performance level as long as it has a positive amount of credits
(ic > 0). Whenever an instance operates at peak performance
(the CPU is non-idle), its credits will deplete with a rate of
td ∈ N+ per hour. Simultaneously, its credits replenish with
a constant rate of tr ∈ N+ per hour as long as the instance
is running (i.e., not in the “stopped” or “terminated” state),
independently of instance usage. For practical reasons, the rate
of replenishment is typically substantially lower than the rate
of depletion (∀t ∈ T : tr << td). An instance is throttled
to baseline performance level if it has completely depleted its
credits.

Instances typically do not start with empty credit. Rather, in-
stances receive an initial amount of credits on startup ts ∈ N+,
which allows new instances to immediately operate at peak
performance for a predictable amount of time after startup.
Conversely, idle instances cannot accrue credits forever, as
the maximum amount of credits per instance is capped at
tm ∈ N+. For all instance types, this upper limit tm is

designed so that an instance can build up credits for up
to 24 hours at a time. As by definition the credit balance
can never deplete below 0 (instances cannot operate at peak
performance after fully depleting their credits), this means that
∀i ∈ I : 0 ≤ itc ≤ itm at any time.

Note that this process of credit depletion and replenishment
is continuously executed in the background by the cloud
provider. Credit depletion operates on a millisecond basis
and with fractional credits. That is, in practice, assuming a
freshly started instance i has an average CPU load of 50%
over its first hour of operation, the instance’s credit balance
will be ic = its − itd

2 + itr. Assuming that its > itd
2 , the

instance is guaranteed to be able to able to operate at a CPU
performance of sp(it) through the hour. However, given that
typically itd

2 > itr, the instance will use parts of its credits
in the process. In order to actually accumulate credits, the
average CPU utilization of the instance will need to be below
itr
itd

. We denote this utilization rate, which keeps the instance
credit account constant, as the standard instance utilization
tū. Finally, an instance has defined hourly costs c(t) ∈ R+,
which depend on its type and are represented as US dollars
per started billing time unit (BTU), e.g., one hour.

B. Implementation in Amazon EC2
This model is already implemented and publicly available

in the (at the time of writing) current generation of bursting
instance types (t2) in AWS EC2. Four different concrete in-
stance types that follow this model are available: t2.micro,
t2.small, t2.medium, and t2.large. In the following,
we focus on the former three instance types.

Name (t2.*) sp(t) sb(t) ts tm td tr tū
micro 2 20 30 144 60 6 10%
small 2 10 30 288 60 12 20%
medium 1 2.5 60 576 120 24 20%

Table I: Basic model parameters of the t2 instance type family
in AWS EC2.

All types are backed by the same Intel Xeon processors
with 2.5GHz standard CPU frequency and the possibility to
(for shorter terms) go up to a frequency of 3.3GHz. All of them
differ in the provided baseline performance, as well as in most
other model parameters. Table I summarizes the specifications
in the notation of our basic model. The information in this
table is largely based on the official EC2 documentation1.
The values given for sp(t) and sb(t) should be seen as
relative metrics, which only make sense in comparison to the
other performance values in this table. The values for ts and
tm represent credits, where each credit allows for using a
single CPU core for one minute at peak performance. That is,
given that the t2.medium instance type has two cores, fully
utilizing this instance for 1 minute uses twice as much credits
as the other instance types, hence the twice as large depletion
rate td. Both td and tr are given as hourly rates. Thus, a

1http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-instances.
html

A. Study Setup
We have used Cloud Workbench [5], [6] (CWB) and the

sysbench benchmark to collect empirical performance data
in two dimensions: CPU performance (integer arithmetics)
and disk IO (combined hard disk read/write speed). We have
evaluated all studied t2 instance types on their peak and
baseline performance levels, along with the general-purpose
instance types m3.medium and m3.large and the smallest
compute-optimized type c4.large. To measure peak per-
formance of bursting instances, we started an instance and
immediately ran the respective benchmark. As all benchmark
executions lasted less than 30 minutes, ts on all instance types
was sufficient to guarantee that instances always ran at peak
performance level in this setup (cp. also Table I). To measure
the baseline performance, we again acquired an instance of the
specific type, fully depleted its startup credits by repeatedly
executing a CPU benchmark for 70 minutes, and then executed
the targeted benchmark. For each configuration, we collected
50 data points. All data was collected between May, 1st and
May, 15th 2015 in the eu-west-1 region of AWS EC2. All
data, as well as the CWB files used to define the benchmarks
and analysis code for the R statistical computing program, are
available on GitHub4.

B. Results
We now discuss our benchmarking results in terms of

CPU and IO performance and cost efficiency. Further, we
compare t2 bursting instance types to the previously-studied
t1 generation.

1) CPU Performance Comparison: For benchmarking CPU
performance, we used the sysbench CPU benchmark, which
is a focused micro-benchmark measuring the performance of
integer arithmetics. The result of the benchmark is the duration
it took to execute a defined set of arithmetic operations.
We follow a similar procedure as in [7] and normalize our
results using the mean performance of a single m3.medium
instance as a baseline for comparison (59 seconds). We refer
to this unit as medium-instance equivalents. sysbench CPU
results s are converted to medium-instance equivalents using
the transformation θ : R → R, defined as θ(s) = 59

s .
Intuitively, a performance of x medium-instance equivalents
for an instance type means that a user would need to acquire
x m3.medium instances to achieve the same mean integer
arithmetics performance.

Figure 2 depicts the benchmarking results for all instance
types in our study. For t2 types, we benchmarked both the
performance on peak and baseline performance in Boxplot
notation. The dashed horizontal line represents the baseline
performance of a single m3.medium instance. This data is
also summarized in Table II and Table III. We use m̄ to denote
the arithmetic mean of all 50 benchmark observations, and mσ

for the relative standard deviation in percent.
We have observed empirical results close to what we

expected based on Table I. All bursting instance types are

4https://github.com/sealuzh/bursting-cloud-instances

substantially faster than m3.medium on peak performance
level sp, and slower on baseline level sb. For t2.micro, we
achieved a performance of 0.21 medium-instance equivalents
on baseline versus 2.06 on peak performance level. This is
close to the expected 10-fold speedup between peak and
baseline. Peak performance of t2.micro and t2.small
are comparable and close to twice the performance achieved
by a m3.medium instance, while the peak performance of
t2.medium is about 2 times faster compared to the other
t2 types. The performance of all t2 instance types is rather
predictable on both performance levels, with relative standard
deviations between 3% and 8% of the mean. However, we
experienced a small number of outliers in our experiments,
which suggests that even in t2 bursting instance types, cloud
users still occasionally need to deal with slow instances
potentially due to noisy neighbours and shared CPUs.

t2.micro t2.small t2.medium
(0.014 $ / h) (0.028 $ / h) (0.056 $ / h)
sp sb sp sb sp sb

m̄ 2.06 0.21 1.98 0.41 3.99 0.87
mσ 3% 8% 4% 6% 5% 6%

Table II: CPU benchmarking results for t2 instance type as
medium-instance equivalents. Prices are for Linux instances
in the eu-west-1 region, and as of May, 21st, 2015.

We also put these results in relation to other com-
mon current-generation instance types. m3.medium and
m3.large are the two cheapest general-purpose instance
types, and c4.large is the cheapest CPU-optimized instance
type. t1.micro is the cheapest previous-generation bursting
instance type. Data for this instance type is taken from our
previous study and also publicly available [3].

m3.medium m3.large c4.large t1.micro
0.077 $ / h 0.154 $ / h 0.132 $ / h 0.02 $ / h

m̄ 1 3.51 4.19 1.41
mσ ≈0% ≈0% ≈0% 28%

Table III: CPU benchmarking results for other current-
generation instance types as medium-instance equivalents.
Prices are for Linux instances in the eu-west-1 region, and
as of May, 21st, 2015.

These results show that, on peak performance, all t2
instances outperform m3.medium instances by at least a
factor of 1.98. However, on baseline performance, all general-
purpose instance types outperform bursting instance types in
terms of performance and performance predictability. In fact,
we have not experienced any relevant variability (<0.15) in
our CPU benchmarking results for m3.medium, m3.large,
and c4.large. Our comparison with previous-generation
bursting instances of the t1.micro type has shown that the
peak performance of such instance types is substantially slower
than of current-generation bursting instances (1.41 medium-
instance equivalents versus 2.06 for the smallest bursting
instance types). Further, and more interestingly, these instances
are substantially less predictable in terms of performance, with
a relative standard deviation of 28% of the mean even on peak

A. Study Setup
We have used Cloud Workbench [5], [6] (CWB) and the

sysbench benchmark to collect empirical performance data
in two dimensions: CPU performance (integer arithmetics)
and disk IO (combined hard disk read/write speed). We have
evaluated all studied t2 instance types on their peak and
baseline performance levels, along with the general-purpose
instance types m3.medium and m3.large and the smallest
compute-optimized type c4.large. To measure peak per-
formance of bursting instances, we started an instance and
immediately ran the respective benchmark. As all benchmark
executions lasted less than 30 minutes, ts on all instance types
was sufficient to guarantee that instances always ran at peak
performance level in this setup (cp. also Table I). To measure
the baseline performance, we again acquired an instance of the
specific type, fully depleted its startup credits by repeatedly
executing a CPU benchmark for 70 minutes, and then executed
the targeted benchmark. For each configuration, we collected
50 data points. All data was collected between May, 1st and
May, 15th 2015 in the eu-west-1 region of AWS EC2. All
data, as well as the CWB files used to define the benchmarks
and analysis code for the R statistical computing program, are
available on GitHub4.

B. Results
We now discuss our benchmarking results in terms of

CPU and IO performance and cost efficiency. Further, we
compare t2 bursting instance types to the previously-studied
t1 generation.

1) CPU Performance Comparison: For benchmarking CPU
performance, we used the sysbench CPU benchmark, which
is a focused micro-benchmark measuring the performance of
integer arithmetics. The result of the benchmark is the duration
it took to execute a defined set of arithmetic operations.
We follow a similar procedure as in [7] and normalize our
results using the mean performance of a single m3.medium
instance as a baseline for comparison (59 seconds). We refer
to this unit as medium-instance equivalents. sysbench CPU
results s are converted to medium-instance equivalents using
the transformation θ : R → R, defined as θ(s) = 59

s .
Intuitively, a performance of x medium-instance equivalents
for an instance type means that a user would need to acquire
x m3.medium instances to achieve the same mean integer
arithmetics performance.

Figure 2 depicts the benchmarking results for all instance
types in our study. For t2 types, we benchmarked both the
performance on peak and baseline performance in Boxplot
notation. The dashed horizontal line represents the baseline
performance of a single m3.medium instance. This data is
also summarized in Table II and Table III. We use m̄ to denote
the arithmetic mean of all 50 benchmark observations, and mσ

for the relative standard deviation in percent.
We have observed empirical results close to what we

expected based on Table I. All bursting instance types are

4https://github.com/sealuzh/bursting-cloud-instances

substantially faster than m3.medium on peak performance
level sp, and slower on baseline level sb. For t2.micro, we
achieved a performance of 0.21 medium-instance equivalents
on baseline versus 2.06 on peak performance level. This is
close to the expected 10-fold speedup between peak and
baseline. Peak performance of t2.micro and t2.small
are comparable and close to twice the performance achieved
by a m3.medium instance, while the peak performance of
t2.medium is about 2 times faster compared to the other
t2 types. The performance of all t2 instance types is rather
predictable on both performance levels, with relative standard
deviations between 3% and 8% of the mean. However, we
experienced a small number of outliers in our experiments,
which suggests that even in t2 bursting instance types, cloud
users still occasionally need to deal with slow instances
potentially due to noisy neighbours and shared CPUs.

t2.micro t2.small t2.medium
(0.014 $ / h) (0.028 $ / h) (0.056 $ / h)
sp sb sp sb sp sb

m̄ 2.06 0.21 1.98 0.41 3.99 0.87
mσ 3% 8% 4% 6% 5% 6%

Table II: CPU benchmarking results for t2 instance type as
medium-instance equivalents. Prices are for Linux instances
in the eu-west-1 region, and as of May, 21st, 2015.

We also put these results in relation to other com-
mon current-generation instance types. m3.medium and
m3.large are the two cheapest general-purpose instance
types, and c4.large is the cheapest CPU-optimized instance
type. t1.micro is the cheapest previous-generation bursting
instance type. Data for this instance type is taken from our
previous study and also publicly available [3].

m3.medium m3.large c4.large t1.micro
0.077 $ / h 0.154 $ / h 0.132 $ / h 0.02 $ / h

m̄ 1 3.51 4.19 1.41
mσ ≈0% ≈0% ≈0% 28%

Table III: CPU benchmarking results for other current-
generation instance types as medium-instance equivalents.
Prices are for Linux instances in the eu-west-1 region, and
as of May, 21st, 2015.

These results show that, on peak performance, all t2
instances outperform m3.medium instances by at least a
factor of 1.98. However, on baseline performance, all general-
purpose instance types outperform bursting instance types in
terms of performance and performance predictability. In fact,
we have not experienced any relevant variability (<0.15) in
our CPU benchmarking results for m3.medium, m3.large,
and c4.large. Our comparison with previous-generation
bursting instances of the t1.micro type has shown that the
peak performance of such instance types is substantially slower
than of current-generation bursting instances (1.41 medium-
instance equivalents versus 2.06 for the smallest bursting
instance types). Further, and more interestingly, these instances
are substantially less predictable in terms of performance, with
a relative standard deviation of 28% of the mean even on peak

147

15

71

15

71

15

13

23

32

m3.medium

t2.medium − Peak

t2.small − Peak

t2.medium − Base

t2.micro − Base

t2.micro − Peak

t2.small − Base

m3.large

c4.large

0 50 100 150
Performance / Cost Ratio (pcr)

In
st

an
ce

 T
yp

es

(a) Comparison of performance-cost ratios pcr(t) of different in-
stance types.

15

15

14

15

14

15

13

23

32

m3.medium

t2.medium − Peak

t2.small − Peak

t2.medium − Base

t2.micro − Base

t2.micro − Peak

t2.small − Base

m3.large

c4.large

0 10 20 30
Full−Utilization Equivalent pcr

In
st

an
ce

 T
yp

es

(b) Comparison of full-utilization equivalent performance-cost ratios
unpcr(t,100).

Figure 4: Comparison of cost efficiency

performance for t2 instances, are not as relevant anymore as
what we and others have experienced in previous studies [3].
This indicates a longer trend towards more homogeneous IO
performance across instance types, which has implications for
practitioners and researchers.

3) Comparison of CPU Cost Efficiency: So far, we have
discussed and contrasted the performance of instance types
independently of their hourly costs. As indicated in [10],
such an isolated view is often of limited usefulness in a
cloud computing context. Rather, practitioners are typically
interested in the performance per US Dollar spent of an
instance type, which we now discuss.

We define the performance-cost ratio as pcr(t) = m̄
c(t) . The

unit of pcr are medium-instance equivalents per US dollar
and hour. We visualize pcr for all configurations and CPU
performance in Figure 4a. Evidently, on peak performance
level, all bursting instance types provide tremendous per-cost
values. For instance, the cheapest type t2.micro surpasses
the compute-optimized c4.large type in CPU performance
per USD almost by a factor of 5 as long as the instance’s
credits are not depleted. Conversely, on baseline performance
level, bursting instance types are less cost-efficient than all
other types in our study with the interesting exception of
m3.medium.

However, looking at the pcr alone is misleading, as this
metric does not consider the fact that, in order to get the
performance-cost ratio indicated above, users can only utilize
a bursting instance a fraction of the time (corresponding to
tū in Table I, e.g., 10% for t2.micro), and need to let
the instance idle to replenish credits the rest of the time.
Hence, it makes sense to consider a second, related metric,
the utilization-normalized performance-cost ratio (unpcr). In-
tuitively, unpcr can be interpreted as the costs of operating a
cluster of bursting instances, so that one instance can always
be operated at peak performance under the assumed utiliza-
tion level. For an utilization of 100% and the t2.micro

type, this can be achieved by acquiring 10 instances and
alternating requests between them, so that each instance is
idle 90% of the time and the credit balance of each instance
remains stable indefinitely. We formally define unpcr(t, u)
as unpcr(t, u) = pcr(t)

⌈ u
tū

⌉ for a given instance type t ∈ T

and an utilization level u ∈ [0; 100]. In this definition, the
term ⌈ u

tū
⌉ represents the number of bursting instances that

are required to indefinitely operate at peak performance under
the assumed utilization level. ⌈ ⌉ denotes rounding up to the
next full natural number, as it makes little sense to consider
fractions of virtual machine instances. Figure 4b visualizes
unpcr for full utilization (u = 100) and all configurations. For
all non-bursting types, as well as for bursting types at baseline
performance, pcr(t) = unpcr(t, 100) by definition. This
visualization shows that currently, all t2 types are designed
with a similar unpcr(t, 100) target of 14 to 15. m3.medium
instances are slightly less cost-efficient with an unpcr(t, 100)
of 13, while we see economies of scale become relevant
for the larger m3.large and c4.large instance types.
These results reinforce the rather intuitive notion that bursting
instance types are very cost-efficient if used only sporadically,
but quickly become inefficient in sustained usage, i.e., when
used with high utilization. Our results also show that there is
currently no clear advantage to using m3.medium instances,
as they are less cost-efficient than bursting instance types even
in sustained use.

4) Comparison to Previous-Generation Bursting Instances:
Another interesting question is how current-generation t2
instance types compare to the previously available t1 types,
most importantly t1.micro. Both instance type families
share similar basic ideas, but the actual implementation varies
considerably. Ultimately, t1.micro is a high-variance, best-
effort based instance type, while current-generation bursting
instance types follow a largely predictable performance tra-
jectory, as discussed in Section II-A. This is illustrated in

Department of Informatics – s.e.a.l.

software evolution & architecture lab

Formal Model – Performance-Cost Metrics

•  Performance-cost ratio

Unit: medium-instance equivalents per US dollar and hour

•  Utilization-normalized performance-cost ratio

Intuitively: costs of operating a cluster of bursting instances, so that one
instance can always be operated at peak performance under the
assumed utilization level u

2015-12-09 Page 25

147

15

71

15

71

15

13

23

32

m3.medium

t2.medium − Peak

t2.small − Peak

t2.medium − Base

t2.micro − Base

t2.micro − Peak

t2.small − Base

m3.large

c4.large

0 50 100 150
Performance / Cost Ratio (pcr)

In
st

an
ce

 T
yp

es

(a) Comparison of performance-cost ratios pcr(t) of different in-
stance types.

15

15

14

15

14

15

13

23

32

m3.medium

t2.medium − Peak

t2.small − Peak

t2.medium − Base

t2.micro − Base

t2.micro − Peak

t2.small − Base

m3.large

c4.large

0 10 20 30
Full−Utilization Equivalent pcr

In
st

an
ce

 T
yp

es

(b) Comparison of full-utilization equivalent performance-cost ratios
unpcr(t,100).

Figure 4: Comparison of cost efficiency

performance for t2 instances, are not as relevant anymore as
what we and others have experienced in previous studies [3].
This indicates a longer trend towards more homogeneous IO
performance across instance types, which has implications for
practitioners and researchers.

3) Comparison of CPU Cost Efficiency: So far, we have
discussed and contrasted the performance of instance types
independently of their hourly costs. As indicated in [10],
such an isolated view is often of limited usefulness in a
cloud computing context. Rather, practitioners are typically
interested in the performance per US Dollar spent of an
instance type, which we now discuss.

We define the performance-cost ratio as pcr(t) = m̄
c(t) . The

unit of pcr are medium-instance equivalents per US dollar
and hour. We visualize pcr for all configurations and CPU
performance in Figure 4a. Evidently, on peak performance
level, all bursting instance types provide tremendous per-cost
values. For instance, the cheapest type t2.micro surpasses
the compute-optimized c4.large type in CPU performance
per USD almost by a factor of 5 as long as the instance’s
credits are not depleted. Conversely, on baseline performance
level, bursting instance types are less cost-efficient than all
other types in our study with the interesting exception of
m3.medium.

However, looking at the pcr alone is misleading, as this
metric does not consider the fact that, in order to get the
performance-cost ratio indicated above, users can only utilize
a bursting instance a fraction of the time (corresponding to
tū in Table I, e.g., 10% for t2.micro), and need to let
the instance idle to replenish credits the rest of the time.
Hence, it makes sense to consider a second, related metric,
the utilization-normalized performance-cost ratio (unpcr). In-
tuitively, unpcr can be interpreted as the costs of operating a
cluster of bursting instances, so that one instance can always
be operated at peak performance under the assumed utiliza-
tion level. For an utilization of 100% and the t2.micro

type, this can be achieved by acquiring 10 instances and
alternating requests between them, so that each instance is
idle 90% of the time and the credit balance of each instance
remains stable indefinitely. We formally define unpcr(t, u)
as unpcr(t, u) = pcr(t)

⌈ u
tū

⌉ for a given instance type t ∈ T

and an utilization level u ∈ [0; 100]. In this definition, the
term ⌈ u

tū
⌉ represents the number of bursting instances that

are required to indefinitely operate at peak performance under
the assumed utilization level. ⌈ ⌉ denotes rounding up to the
next full natural number, as it makes little sense to consider
fractions of virtual machine instances. Figure 4b visualizes
unpcr for full utilization (u = 100) and all configurations. For
all non-bursting types, as well as for bursting types at baseline
performance, pcr(t) = unpcr(t, 100) by definition. This
visualization shows that currently, all t2 types are designed
with a similar unpcr(t, 100) target of 14 to 15. m3.medium
instances are slightly less cost-efficient with an unpcr(t, 100)
of 13, while we see economies of scale become relevant
for the larger m3.large and c4.large instance types.
These results reinforce the rather intuitive notion that bursting
instance types are very cost-efficient if used only sporadically,
but quickly become inefficient in sustained usage, i.e., when
used with high utilization. Our results also show that there is
currently no clear advantage to using m3.medium instances,
as they are less cost-efficient than bursting instance types even
in sustained use.

4) Comparison to Previous-Generation Bursting Instances:
Another interesting question is how current-generation t2
instance types compare to the previously available t1 types,
most importantly t1.micro. Both instance type families
share similar basic ideas, but the actual implementation varies
considerably. Ultimately, t1.micro is a high-variance, best-
effort based instance type, while current-generation bursting
instance types follow a largely predictable performance tra-
jectory, as discussed in Section II-A. This is illustrated in

147

15

71

15

71

15

13

23

32

m3.medium

t2.medium − Peak

t2.small − Peak

t2.medium − Base

t2.micro − Base

t2.micro − Peak

t2.small − Base

m3.large

c4.large

0 50 100 150
Performance / Cost Ratio (pcr)

In
st

an
ce

 T
yp

es

(a) Comparison of performance-cost ratios pcr(t) of different in-
stance types.

15

15

14

15

14

15

13

23

32

m3.medium

t2.medium − Peak

t2.small − Peak

t2.medium − Base

t2.micro − Base

t2.micro − Peak

t2.small − Base

m3.large

c4.large

0 10 20 30
Full−Utilization Equivalent pcr

In
st

an
ce

 T
yp

es

(b) Comparison of full-utilization equivalent performance-cost ratios
unpcr(t,100).

Figure 4: Comparison of cost efficiency

performance for t2 instances, are not as relevant anymore as
what we and others have experienced in previous studies [3].
This indicates a longer trend towards more homogeneous IO
performance across instance types, which has implications for
practitioners and researchers.

3) Comparison of CPU Cost Efficiency: So far, we have
discussed and contrasted the performance of instance types
independently of their hourly costs. As indicated in [10],
such an isolated view is often of limited usefulness in a
cloud computing context. Rather, practitioners are typically
interested in the performance per US Dollar spent of an
instance type, which we now discuss.

We define the performance-cost ratio as pcr(t) = m̄
c(t) . The

unit of pcr are medium-instance equivalents per US dollar
and hour. We visualize pcr for all configurations and CPU
performance in Figure 4a. Evidently, on peak performance
level, all bursting instance types provide tremendous per-cost
values. For instance, the cheapest type t2.micro surpasses
the compute-optimized c4.large type in CPU performance
per USD almost by a factor of 5 as long as the instance’s
credits are not depleted. Conversely, on baseline performance
level, bursting instance types are less cost-efficient than all
other types in our study with the interesting exception of
m3.medium.

However, looking at the pcr alone is misleading, as this
metric does not consider the fact that, in order to get the
performance-cost ratio indicated above, users can only utilize
a bursting instance a fraction of the time (corresponding to
tū in Table I, e.g., 10% for t2.micro), and need to let
the instance idle to replenish credits the rest of the time.
Hence, it makes sense to consider a second, related metric,
the utilization-normalized performance-cost ratio (unpcr). In-
tuitively, unpcr can be interpreted as the costs of operating a
cluster of bursting instances, so that one instance can always
be operated at peak performance under the assumed utiliza-
tion level. For an utilization of 100% and the t2.micro

type, this can be achieved by acquiring 10 instances and
alternating requests between them, so that each instance is
idle 90% of the time and the credit balance of each instance
remains stable indefinitely. We formally define unpcr(t, u)
as unpcr(t, u) = pcr(t)

⌈ u
tū

⌉ for a given instance type t ∈ T

and an utilization level u ∈ [0; 100]. In this definition, the
term ⌈ u

tū
⌉ represents the number of bursting instances that

are required to indefinitely operate at peak performance under
the assumed utilization level. ⌈ ⌉ denotes rounding up to the
next full natural number, as it makes little sense to consider
fractions of virtual machine instances. Figure 4b visualizes
unpcr for full utilization (u = 100) and all configurations. For
all non-bursting types, as well as for bursting types at baseline
performance, pcr(t) = unpcr(t, 100) by definition. This
visualization shows that currently, all t2 types are designed
with a similar unpcr(t, 100) target of 14 to 15. m3.medium
instances are slightly less cost-efficient with an unpcr(t, 100)
of 13, while we see economies of scale become relevant
for the larger m3.large and c4.large instance types.
These results reinforce the rather intuitive notion that bursting
instance types are very cost-efficient if used only sporadically,
but quickly become inefficient in sustained usage, i.e., when
used with high utilization. Our results also show that there is
currently no clear advantage to using m3.medium instances,
as they are less cost-efficient than bursting instance types even
in sustained use.

4) Comparison to Previous-Generation Bursting Instances:
Another interesting question is how current-generation t2
instance types compare to the previously available t1 types,
most importantly t1.micro. Both instance type families
share similar basic ideas, but the actual implementation varies
considerably. Ultimately, t1.micro is a high-variance, best-
effort based instance type, while current-generation bursting
instance types follow a largely predictable performance tra-
jectory, as discussed in Section II-A. This is illustrated in

Number of required instances to
operate at peak performance, given u
(e.g., 10x t2.micro for u=100)

Department of Informatics – s.e.a.l.

software evolution & architecture lab

2015-12-09 Page 26

Contributions

1.  Basic formal model for credit-based bursting behavior

2.  Empirical study of performance behavior

3.  Comparison with current/previous generation instances (performance/cost)

4.  Potential uses cases for practitioners

Bursting Instance Types 9

types was comparable to general-purpose or CPU-optimized instance types (not
shown for reasons of brevity).

Comparison of Cost E�ciency. So far, we have discussed and contrasted the
performance of instance types independently of their hourly costs. As indicated
in [8], such an isolated view is often of limited usefulness in a cloud comput-
ing context. Rather, practitioners are typically interested in the performance
per US Dollar spent of an instance type. We define the performance-cost ratio as
pcr(t) = m̄

c(t) . The unit of pcr are medium-instance equivalents per US dollar and
hour. We visualize pcr for all configurations and CPU performance in Figure 3a.
Evidently, on sp, all bursting instance types provide tremendous per-cost val-
ues. For instance, the cheapest type t2.micro surpasses the compute-optimized
c4.large type in CPU performance per USD almost by a factor of 5 as long
as the instance’s credits are not depleted. Conversely, on sb, bursting instance
types are less cost-e�cient than all other types in our study with the interesting
exception of m3.medium.

147

15

71

15

71

15

13

23

32

m3.medium

t2.medium − Peak

t2.small − Peak

t2.medium − Base

t2.micro − Base

t2.micro − Peak

t2.small − Base

m3.large

c4.large

0 50 100 150
Performance / Cost Ratio (pcr)

In
st

an
ce

 T
yp

es

(a) Comparison of performance-cost ra-
tios pcr(t) of di↵erent instance types.

15

15

14

15

14

15

13

23

32

m3.medium

t2.medium − Peak

t2.small − Peak

t2.medium − Base

t2.micro − Base

t2.micro − Peak

t2.small − Base

m3.large

c4.large

0 10 20 30
Full−Utilization Equivalent pcr

In
st

an
ce

 T
yp

es

(b) Comparison of full-utilization equiva-
lent performance-cost ratios unpcr(t,100).

Fig. 3: Comparison of cost e�ciency

However, looking at the pcr alone is misleading, as this metric obfuscates
the fact that, in order to get the performance-cost ratio indicated above, users
can only utilize a bursting instance a fraction of the time (corresponding to
tū in Table 1, e.g., 10% for t2.micro), and need to let the instance idle to
replenish credits the rest of the time. Hence, it makes sense to consider a second,
related metric, the utilization-normalized cost-performance ratio uncpr, defined
as uncpr(t, u) = d u

100 tū
ecpr(t) for a given instance type t 2 T and an utilization

level u 2 [0; 100]. Intuitively, uncpr can be interpreted as the costs of operating a
cluster of bursting instances, so that one instance can always be operated at peak

Bursting Instance Types 7

t2.micro t2.small t2.medium

1

2

3

4

t2.micro − Peak t2.micro − Base t2.small − Peak t2.small − Base t2.medium − Peak t2.medium − Base
Instance Types

M
ed

iu
m
−I

ns
ta

nc
e

Eq
ui

va
le

nt
s

(a) CPU performance of all t2 instance types, at peak and baseline performance.

t2.micro m3.medium m3.large c4.large t1.micro

0

1

2

3

4

t2.micro − Peak t2.micro − Base m3.medium m3.large c4.large t1.micro − Peak
Instance Types

M
ed

iu
m
−I

ns
ta

nc
e

Eq
ui

va
le

nt
s

(b) CPU performance of other common instance types for comparison.

Fig. 2: CPU performance of instance types as medium-instance equivalents.

sp, and slower on sb. For t2.micro, we achieved a performance of 0.21 medium-
instance equivalents on sb versus 2.06 on sp. This is close to the expected 10-fold
speedup between sb and sp. Peak performance sp of t2.micro and t2.small

are comparable and close to twice the performance achieved by a m3.medium

instance, while sp of t2.medium is about 2 times faster than sp of the other
t2 types. The performance of all instance types is rather predictable on sp as
well as sb, with relative standard deviations between 3% and 8% of the mean.
However, we experienced a small number of outliers in our experiments, which
suggests that even in t2 bursting instance types, cloud users still occasionally
need to deal with slow instances due to noisy neighbours.

Table 2: CPU benchmarking results for t2 instance type as medium-instance
equivalents. Prices are for Linux instances in the eu-west-1 region, and as of
May, 21st, 2015.

t2.micro t2.small t2.medium

(0.014 $ / hour) (0.028 $ / hour) (0.056 $ / hour)
sp sb sp sb sp sb

m̄ (CPU) 2.06 0.21 1.98 0.41 3.99 0.87
m� (CPU) 3% 8% 4% 6% 5% 6%

Figure 2b and Table 3 put these results in relation to other common current-
generation instance types. m3.medium and m3.large are the two cheapest general-
purpose instance types, and c4.large is the cheapest CPU-optimized instance

2 Philipp Leitner and Joel Scheuner

and f1.micro in Google Compute Engine (GCE). These instances share all
computing resources, including their CPU, with other tenants. Hence, they are
typically the cheapest available option in a cloud. Unsurprisingly, recent studies
have found that bursting instance types are particularly prone to performance
unreliability due to noisy neighbors and unpredictability of the scheduler [3,4].

However, in summer 2014, AWS has made the second generation of bursting
instance types publicly available, in the following referred to as the t2 family.
Unlike previous types and the o↵erings of competitors (which are typically best-
e↵ort oriented and consequently highly unpredictable), t2 types now operate on
two distinct performance levels, a peak and a baseline performance level. Each
instance has an account with credits for running on peak performance and drops
to baseline performance when its credits run out.

While this specific model is currently only available in AWS EC2, we assume
that other providers will soon follow with similar o↵erings. Hence, we provide
a first empirical and analytical study of the implications of this new instance
type family for practitioners. We introduce a basic model that formally captures
the performance behavior of these instances for analysis. Further, we empirically
study how t2 instance types compare in terms of performance to general-purpose
instance types and to the previous generation of bursting instance types. We
sketch a number of practical use cases and discuss the characteristics of applica-
tions for which t2 instances are the cheapest option. We empirically show that
general-purpose instances are more cost-e�cient for highly-loaded services. How-
ever, for services with an average utilization of 40% or less, t2 instances provide
vastly better performance per US dollar spent. We also show that t2 instances are
attractive for smaller, non-critical IO-bound services, such as small databases.
Finally, we discuss the basic idea of credit boosting, a simple scheme that allows
cloud customers to improve the performance-cost ratio of t2 instances.

2 Credit-Based Bursting Instance Types

As foundation for the remainder of this study, we now formally define the under-
lying model of credit-based bursting instance types, and explain how this model
is currently implemented in Amazon EC2.

2.1 Basic Model

Consider a cloud consumer who is renting a set I of bursting cloud instances.
Each instance i 2 I has a defined instance type it 2 T , where T is the set of ex-
isting bursting instance types (e.g., t2.micro). Each instance i 2 I can operate
on two defined CPU performance levels, a peak performance level sp(t) 2 R+

and a baseline performance level sb(t) 2 R+. Both, the peak and baseline per-
formance level are dependent on the concrete instance type. Further, we assume
performance levels to be defined by a positive real number, where lower numbers
represent better performance. That is, the performance level is assumed to repre-
sent the time it takes an instance to execute a defined benchmark task (e.g., find

2 Philipp Leitner and Joel Scheuner

and f1.micro in Google Compute Engine (GCE). These instances share all
computing resources, including their CPU, with other tenants. Hence, they are
typically the cheapest available option in a cloud. Unsurprisingly, recent studies
have found that bursting instance types are particularly prone to performance
unreliability due to noisy neighbors and unpredictability of the scheduler [3,4].

However, in summer 2014, AWS has made the second generation of bursting
instance types publicly available, in the following referred to as the t2 family.
Unlike previous types and the o↵erings of competitors (which are typically best-
e↵ort oriented and consequently highly unpredictable), t2 types now operate on
two distinct performance levels, a peak and a baseline performance level. Each
instance has an account with credits for running on peak performance and drops
to baseline performance when its credits run out.

While this specific model is currently only available in AWS EC2, we assume
that other providers will soon follow with similar o↵erings. Hence, we provide
a first empirical and analytical study of the implications of this new instance
type family for practitioners. We introduce a basic model that formally captures
the performance behavior of these instances for analysis. Further, we empirically
study how t2 instance types compare in terms of performance to general-purpose
instance types and to the previous generation of bursting instance types. We
sketch a number of practical use cases and discuss the characteristics of applica-
tions for which t2 instances are the cheapest option. We empirically show that
general-purpose instances are more cost-e�cient for highly-loaded services. How-
ever, for services with an average utilization of 40% or less, t2 instances provide
vastly better performance per US dollar spent. We also show that t2 instances are
attractive for smaller, non-critical IO-bound services, such as small databases.
Finally, we discuss the basic idea of credit boosting, a simple scheme that allows
cloud customers to improve the performance-cost ratio of t2 instances.

2 Credit-Based Bursting Instance Types

As foundation for the remainder of this study, we now formally define the under-
lying model of credit-based bursting instance types, and explain how this model
is currently implemented in Amazon EC2.

2.1 Basic Model

Consider a cloud consumer who is renting a set I of bursting cloud instances.
Each instance i 2 I has a defined instance type it 2 T , where T is the set of ex-
isting bursting instance types (e.g., t2.micro). Each instance i 2 I can operate
on two defined CPU performance levels, a peak performance level sp(t) 2 R+

and a baseline performance level sb(t) 2 R+. Both, the peak and baseline per-
formance level are dependent on the concrete instance type. Further, we assume
performance levels to be defined by a positive real number, where lower numbers
represent better performance. That is, the performance level is assumed to repre-
sent the time it takes an instance to execute a defined benchmark task (e.g., find

Bursting Instance Types 9

types was comparable to general-purpose or CPU-optimized instance types (not
shown for reasons of brevity).

Comparison of Cost E�ciency. So far, we have discussed and contrasted the
performance of instance types independently of their hourly costs. As indicated
in [8], such an isolated view is often of limited usefulness in a cloud comput-
ing context. Rather, practitioners are typically interested in the performance
per US Dollar spent of an instance type. We define the performance-cost ratio as
pcr(t) = m̄

c(t) . The unit of pcr are medium-instance equivalents per US dollar and
hour. We visualize pcr for all configurations and CPU performance in Figure 3a.
Evidently, on sp, all bursting instance types provide tremendous per-cost val-
ues. For instance, the cheapest type t2.micro surpasses the compute-optimized
c4.large type in CPU performance per USD almost by a factor of 5 as long
as the instance’s credits are not depleted. Conversely, on sb, bursting instance
types are less cost-e�cient than all other types in our study with the interesting
exception of m3.medium.

147

15

71

15

71

15

13

23

32

m3.medium

t2.medium − Peak

t2.small − Peak

t2.medium − Base

t2.micro − Base

t2.micro − Peak

t2.small − Base

m3.large

c4.large

0 50 100 150
Performance / Cost Ratio (pcr)

In
st

an
ce

 T
yp

es

(a) Comparison of performance-cost ra-
tios pcr(t) of di↵erent instance types.

15

15

14

15

14

15

13

23

32

m3.medium

t2.medium − Peak

t2.small − Peak

t2.medium − Base

t2.micro − Base

t2.micro − Peak

t2.small − Base

m3.large

c4.large

0 10 20 30
Full−Utilization Equivalent pcr

In
st

an
ce

 T
yp

es

(b) Comparison of full-utilization equiva-
lent performance-cost ratios unpcr(t,100).

Fig. 3: Comparison of cost e�ciency

However, looking at the pcr alone is misleading, as this metric obfuscates
the fact that, in order to get the performance-cost ratio indicated above, users
can only utilize a bursting instance a fraction of the time (corresponding to
tū in Table 1, e.g., 10% for t2.micro), and need to let the instance idle to
replenish credits the rest of the time. Hence, it makes sense to consider a second,
related metric, the utilization-normalized cost-performance ratio uncpr, defined
as uncpr(t, u) = d u

100 tū
ecpr(t) for a given instance type t 2 T and an utilization

level u 2 [0; 100]. Intuitively, uncpr can be interpreted as the costs of operating a
cluster of bursting instances, so that one instance can always be operated at peak

Bursting Instance Types 7

t2.micro t2.small t2.medium

1

2

3

4

t2.micro − Peak t2.micro − Base t2.small − Peak t2.small − Base t2.medium − Peak t2.medium − Base
Instance Types

M
ed

iu
m
−I

ns
ta

nc
e

Eq
ui

va
le

nt
s

(a) CPU performance of all t2 instance types, at peak and baseline performance.

t2.micro m3.medium m3.large c4.large t1.micro

0

1

2

3

4

t2.micro − Peak t2.micro − Base m3.medium m3.large c4.large t1.micro − Peak
Instance Types

M
ed

iu
m
−I

ns
ta

nc
e

Eq
ui

va
le

nt
s

(b) CPU performance of other common instance types for comparison.

Fig. 2: CPU performance of instance types as medium-instance equivalents.

sp, and slower on sb. For t2.micro, we achieved a performance of 0.21 medium-
instance equivalents on sb versus 2.06 on sp. This is close to the expected 10-fold
speedup between sb and sp. Peak performance sp of t2.micro and t2.small

are comparable and close to twice the performance achieved by a m3.medium

instance, while sp of t2.medium is about 2 times faster than sp of the other
t2 types. The performance of all instance types is rather predictable on sp as
well as sb, with relative standard deviations between 3% and 8% of the mean.
However, we experienced a small number of outliers in our experiments, which
suggests that even in t2 bursting instance types, cloud users still occasionally
need to deal with slow instances due to noisy neighbours.

Table 2: CPU benchmarking results for t2 instance type as medium-instance
equivalents. Prices are for Linux instances in the eu-west-1 region, and as of
May, 21st, 2015.

t2.micro t2.small t2.medium

(0.014 $ / hour) (0.028 $ / hour) (0.056 $ / hour)
sp sb sp sb sp sb

m̄ (CPU) 2.06 0.21 1.98 0.41 3.99 0.87
m� (CPU) 3% 8% 4% 6% 5% 6%

Figure 2b and Table 3 put these results in relation to other common current-
generation instance types. m3.medium and m3.large are the two cheapest general-
purpose instance types, and c4.large is the cheapest CPU-optimized instance

Bursting Instance Types 9

types was comparable to general-purpose or CPU-optimized instance types (not
shown for reasons of brevity).

Comparison of Cost E�ciency. So far, we have discussed and contrasted the
performance of instance types independently of their hourly costs. As indicated
in [8], such an isolated view is often of limited usefulness in a cloud comput-
ing context. Rather, practitioners are typically interested in the performance
per US Dollar spent of an instance type. We define the performance-cost ratio as
pcr(t) = m̄

c(t) . The unit of pcr are medium-instance equivalents per US dollar and
hour. We visualize pcr for all configurations and CPU performance in Figure 3a.
Evidently, on sp, all bursting instance types provide tremendous per-cost val-
ues. For instance, the cheapest type t2.micro surpasses the compute-optimized
c4.large type in CPU performance per USD almost by a factor of 5 as long
as the instance’s credits are not depleted. Conversely, on sb, bursting instance
types are less cost-e�cient than all other types in our study with the interesting
exception of m3.medium.

147

15

71

15

71

15

13

23

32

m3.medium

t2.medium − Peak

t2.small − Peak

t2.medium − Base

t2.micro − Base

t2.micro − Peak

t2.small − Base

m3.large

c4.large

0 50 100 150
Performance / Cost Ratio (pcr)

In
st

an
ce

 T
yp

es

(a) Comparison of performance-cost ra-
tios pcr(t) of di↵erent instance types.

15

15

14

15

14

15

13

23

32

m3.medium

t2.medium − Peak

t2.small − Peak

t2.medium − Base

t2.micro − Base

t2.micro − Peak

t2.small − Base

m3.large

c4.large

0 10 20 30
Full−Utilization Equivalent pcr

In
st

an
ce

 T
yp

es

(b) Comparison of full-utilization equiva-
lent performance-cost ratios unpcr(t,100).

Fig. 3: Comparison of cost e�ciency

However, looking at the pcr alone is misleading, as this metric obfuscates
the fact that, in order to get the performance-cost ratio indicated above, users
can only utilize a bursting instance a fraction of the time (corresponding to
tū in Table 1, e.g., 10% for t2.micro), and need to let the instance idle to
replenish credits the rest of the time. Hence, it makes sense to consider a second,
related metric, the utilization-normalized cost-performance ratio uncpr, defined
as uncpr(t, u) = d u

100 tū
ecpr(t) for a given instance type t 2 T and an utilization

level u 2 [0; 100]. Intuitively, uncpr can be interpreted as the costs of operating a
cluster of bursting instances, so that one instance can always be operated at peak

Bursting Instance Types 9

types was comparable to general-purpose or CPU-optimized instance types (not
shown for reasons of brevity).

Comparison of Cost E�ciency. So far, we have discussed and contrasted the
performance of instance types independently of their hourly costs. As indicated
in [8], such an isolated view is often of limited usefulness in a cloud comput-
ing context. Rather, practitioners are typically interested in the performance
per US Dollar spent of an instance type. We define the performance-cost ratio as
pcr(t) = m̄

c(t) . The unit of pcr are medium-instance equivalents per US dollar and
hour. We visualize pcr for all configurations and CPU performance in Figure 3a.
Evidently, on sp, all bursting instance types provide tremendous per-cost val-
ues. For instance, the cheapest type t2.micro surpasses the compute-optimized
c4.large type in CPU performance per USD almost by a factor of 5 as long
as the instance’s credits are not depleted. Conversely, on sb, bursting instance
types are less cost-e�cient than all other types in our study with the interesting
exception of m3.medium.

147

15

71

15

71

15

13

23

32

m3.medium

t2.medium − Peak

t2.small − Peak

t2.medium − Base

t2.micro − Base

t2.micro − Peak

t2.small − Base

m3.large

c4.large

0 50 100 150
Performance / Cost Ratio (pcr)

In
st

an
ce

 T
yp

es

(a) Comparison of performance-cost ra-
tios pcr(t) of di↵erent instance types.

15

15

14

15

14

15

13

23

32

m3.medium

t2.medium − Peak

t2.small − Peak

t2.medium − Base

t2.micro − Base

t2.micro − Peak

t2.small − Base

m3.large

c4.large

0 10 20 30
Full−Utilization Equivalent pcr

In
st

an
ce

 T
yp

es

(b) Comparison of full-utilization equiva-
lent performance-cost ratios unpcr(t,100).

Fig. 3: Comparison of cost e�ciency

However, looking at the pcr alone is misleading, as this metric obfuscates
the fact that, in order to get the performance-cost ratio indicated above, users
can only utilize a bursting instance a fraction of the time (corresponding to
tū in Table 1, e.g., 10% for t2.micro), and need to let the instance idle to
replenish credits the rest of the time. Hence, it makes sense to consider a second,
related metric, the utilization-normalized cost-performance ratio uncpr, defined
as uncpr(t, u) = d u

100 tū
ecpr(t) for a given instance type t 2 T and an utilization

level u 2 [0; 100]. Intuitively, uncpr can be interpreted as the costs of operating a
cluster of bursting instances, so that one instance can always be operated at peak

Bursting Instance Types 11

performance, with a brief 10-minute period of graceful performance degrada-
tion. This performance is largely independently of the usage patterns of the
instance’s neighbors. Another important observation is that t2 instances are al-
ways served with the same hardware model, unlike t1.micro instances, as well as
unlike previous-generation general-purpose instance types [7,9]. This naturally
increases the predictability of performance for the cloud consumer.

4 Usage Scenarios

Based on the empirical data presented in Section 3, we now discuss three prac-
tical usage scenarios for bursting instances.

Hosting Services with Low or Irregular Load. Given our empirical result
that bursting instance types o↵er superior performance per US spent as long as
the average utilization of the instance is at or below its tū, an obvious usage
scenario is to use them for services or applications with low or irregular overall
utilization. These include new services, products, or Web servers of small start-
up companies, which simply do not yet have a large, established customer base.
Alternatively, bursting instance types are also attractive for services whose usage
is subject to substantial variation over the time of a day. This can include, for
instance, regional commercial services, which are primarily used during working
hours. In such scenarios, bursting instances can replenish credits during o↵-times
in order to operate at peak performance during peak hours.

20

30

40

50

40 60 80 100
Utilization (%)

U
til

iz
at

io
n−

N
or

m
al

is
ed

 P
C

R Config

c4.large

m3.large

m3.medium

t2.medium − Peak

t2.micro − Peak

t2.small − Peak

Fig. 5: unpcr(t,u) of di↵erent instance types with increasing utilization u.

Conversely, our results have also shown that for highly-loaded CPU-bound
applications, larger general-purpose or compute-optimized instance types pro-
vide better pcr. Hence, a relevant question is where the cuto↵ point is. This
is visualized in Figure 5. We have depicted the utilization-normalized cost-
performance ratio for increasing average utilization (uncpr). Up to 40% average
utilization, bursting instance types o↵er the best per-cost performance. Start-
ing with 40% utilization, c4.large o↵ers better pcr, while bursting instances

●

●●●●

●

●

●●●

●

●

●●●●●

●

●

●●●●●

●●●

10x
100

200

300

18:10 18:20 18:30 18:40 18:50 19:00 19:10 19:20 19:30 19:40 19:50 20:00 20:10 20:20 20:30
Experiment Duration

Ex
ec

ut
io

n
Ti

m
e

(s
)

147

15

71

15

71

15

13

23

32

m3.medium

t2.medium − Peak

t2.small − Peak

t2.medium − Base

t2.micro − Base

t2.micro − Peak

t2.small − Base

m3.large

c4.large

0 50 100 150
Performance / Cost Ratio (pcr)

In
st

an
ce

 T
yp

es

(a) Comparison of performance-cost ratios pcr(t) of different in-
stance types.

15

15

14

15

14

15

13

23

32

m3.medium

t2.medium − Peak

t2.small − Peak

t2.medium − Base

t2.micro − Base

t2.micro − Peak

t2.small − Base

m3.large

c4.large

0 10 20 30
Full−Utilization Equivalent pcr

In
st

an
ce

 T
yp

es

(b) Comparison of full-utilization equivalent performance-cost ratios
unpcr(t,100).

Figure 4: Comparison of cost efficiency

performance for t2 instances, are not as relevant anymore as
what we and others have experienced in previous studies [3].
This indicates a longer trend towards more homogeneous IO
performance across instance types, which has implications for
practitioners and researchers.

3) Comparison of CPU Cost Efficiency: So far, we have
discussed and contrasted the performance of instance types
independently of their hourly costs. As indicated in [10],
such an isolated view is often of limited usefulness in a
cloud computing context. Rather, practitioners are typically
interested in the performance per US Dollar spent of an
instance type, which we now discuss.

We define the performance-cost ratio as pcr(t) = m̄
c(t) . The

unit of pcr are medium-instance equivalents per US dollar
and hour. We visualize pcr for all configurations and CPU
performance in Figure 4a. Evidently, on peak performance
level, all bursting instance types provide tremendous per-cost
values. For instance, the cheapest type t2.micro surpasses
the compute-optimized c4.large type in CPU performance
per USD almost by a factor of 5 as long as the instance’s
credits are not depleted. Conversely, on baseline performance
level, bursting instance types are less cost-efficient than all
other types in our study with the interesting exception of
m3.medium.

However, looking at the pcr alone is misleading, as this
metric does not consider the fact that, in order to get the
performance-cost ratio indicated above, users can only utilize
a bursting instance a fraction of the time (corresponding to
tū in Table I, e.g., 10% for t2.micro), and need to let
the instance idle to replenish credits the rest of the time.
Hence, it makes sense to consider a second, related metric,
the utilization-normalized performance-cost ratio (unpcr). In-
tuitively, unpcr can be interpreted as the costs of operating a
cluster of bursting instances, so that one instance can always
be operated at peak performance under the assumed utiliza-
tion level. For an utilization of 100% and the t2.micro

type, this can be achieved by acquiring 10 instances and
alternating requests between them, so that each instance is
idle 90% of the time and the credit balance of each instance
remains stable indefinitely. We formally define unpcr(t, u)
as unpcr(t, u) = pcr(t)

⌈ u
tū

⌉ for a given instance type t ∈ T

and an utilization level u ∈ [0; 100]. In this definition, the
term ⌈ u

tū
⌉ represents the number of bursting instances that

are required to indefinitely operate at peak performance under
the assumed utilization level. ⌈ ⌉ denotes rounding up to the
next full natural number, as it makes little sense to consider
fractions of virtual machine instances. Figure 4b visualizes
unpcr for full utilization (u = 100) and all configurations. For
all non-bursting types, as well as for bursting types at baseline
performance, pcr(t) = unpcr(t, 100) by definition. This
visualization shows that currently, all t2 types are designed
with a similar unpcr(t, 100) target of 14 to 15. m3.medium
instances are slightly less cost-efficient with an unpcr(t, 100)
of 13, while we see economies of scale become relevant
for the larger m3.large and c4.large instance types.
These results reinforce the rather intuitive notion that bursting
instance types are very cost-efficient if used only sporadically,
but quickly become inefficient in sustained usage, i.e., when
used with high utilization. Our results also show that there is
currently no clear advantage to using m3.medium instances,
as they are less cost-efficient than bursting instance types even
in sustained use.

4) Comparison to Previous-Generation Bursting Instances:
Another interesting question is how current-generation t2
instance types compare to the previously available t1 types,
most importantly t1.micro. Both instance type families
share similar basic ideas, but the actual implementation varies
considerably. Ultimately, t1.micro is a high-variance, best-
effort based instance type, while current-generation bursting
instance types follow a largely predictable performance tra-
jectory, as discussed in Section II-A. This is illustrated in

