

Bursting with Possibilities

An Empirical Study of Credit-Based Bursting Cloud Instance Types Dr. Philipp Leitner, Joel Scheuner leitner@ifi.uzh.ch, joel.scheuner@uzh.ch

A new Type of Cloud Instances

Credit-Based Bursting Instances

→ Behave fundamentally different than any other existing instance type

Context

• Infrastructure-as-a-Service (laaS)

Virtual Machines (VMs) on a pay-per-use basis

Different performance characteristics

Credit-Based CPU Bursting

Bursting Instance Types in Industry

AWS Official Blog

Oct 2015

"The burstable model has proven to be extremely popular with our customers."

Announced a **new instance type** in the burstable T2 family

Google Compute Engine

"f1-micro machine types **offer bursting capabilities** that allow instances to use additional physical CPU for short periods of time"

Related Work

Cloud Benchmarking

- S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema, "A Performance Analysis of EC2 Cloud Computing Services for Scientific Computing," in *Cloud Computing*, ser. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering. Springer, 2010, vol. 34, pp. 115–131.
- K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf, H. J. Wasserman, and N. J. Wright, "**Performance analysis of high performance computing applications on the amazon web services cloud**," in *Proceedings of the 2010 IEEE Second International Conference on Cloud Computing Technology and Science*, ser. CLOUDCOM '10, 2010, pp. 159–168.
- A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema, "Performance Analysis of Cloud Computing Services for Many-Tasks Scientific Computing," *IEEE Transactions on Parallel and Distributed Systems*, vol. 22, no. 6, pp. 931–945, Jun. 2011.

Burstable Instances

• J. Wen, L. Lu, G. Casale, and E. Smirni, "Less can be More: micro-Managing VMs in Amazon EC2," in *Proceedings of the 2015 IEEE International Conference on Cloud Computing (CLOUD'15)*, 2015.

Credit-Based CPU Bursting – Explained (1)

Credit-Based CPU Bursting – Explained (2)

Research Questions

1. How do *t2* bursting instance types perform in terms of CPU and IO speed in comparison to other instances?

2. When are *t2* bursting instance types more cost-efficient than other instance types?

3. How do *t2* instance types perform in comparison to the previous generation (*t1*) types?

Empirical Study Setup

2 Region Ireland (eu-west-1)

All T2 bursting instance types in May 2015 (t2.micro, t2.small, t2.medium)

Sysbench measures CPU and I/O performance

1.-15. May 2015

50 data points for each configuration (~1000 in total)

Automated execution with Cloud WorkBench (CWB) [1]

Benchmark definitions and data publicly available: https://github.com/sealuzh/bursting-cloud-instances

[1] Scheuner, Leitner, Cito, Gall: Cloud WorkBench - Infrastructure-as-Code Based Cloud Benchmarking. CloudCom'14

Results – T2 vs. Other Instance Types

Results – T2 Bursting Instances

Results – Performance-Cost Ratio (1)

Results – Performance-Cost Ratio (2)

Usage Scenarios – Low or Irregular Load

- Identify the cutoff point for each T2 instance
 - Where does higher avg. utilization (u) make them less cost efficient
- Assumptions: Service is CPU-bound + always requires peak performance

Usage Scenarios – Boosting Performance-Cost Ratio

Idea

Exploit initial CPU credit balance on VM startup

Implementation

Systematically restart VM instances when they run out of CPU credits

Effect

Improved (utilization normalized) performance cost ratio up to 4x

Conclusions

T2 instance types **perform highly predictable** unlike the previous T1 generation of bursting instances.

T2 instance types provide superior performance-cost ratio below 40% average utilization

This research has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 610802 (CloudWave).

APPENDIX

Future Work

• Limited to micro-benchmarks

 \rightarrow Validate results using application benchmarks / actual applications

- Limited to CPU credit bursting
 - \rightarrow Analyze the same bursting model for IOPS¹

¹ http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html#IOcredit

Usage Scenarios – Non-Critical IO

- Trend towards more homogenous IO performance
- No substantial IO performance degradation even at baseline performance
- → Use cost-efficient CPU instances for IO-bound applications

Generations – T1 (previous) vs T2 (current)

Figure 5: Comparison of performance development of stressed t1 and t2 instances.

Formal Model – Concise

- $pcr(t) = \frac{\overline{m}}{c(t)}$ performance-cost ratio (at a given time t)
 - Unit: medium instance equivalents per USD and hour
 - \bar{m} Arithmetic mean of all 50 benchmark observations [seconds]
 - $c(t) \in \mathbb{R}^+$ Hourly costs per started billing time unit [USD]
- $unpcr(t, u) = \frac{pcr(t)}{\lceil \frac{u}{t_{\overline{u}}} \rceil}$ utilization-normalized cost-performance ratio
 - Intuitively: costs of operating a cluster of bursting instances, so that one instance can always be operated at peak performance under the assumed utilization level (e.g., need 10x t2.micro for u=100)
 - $u \in [0; 100]$ Utilization level
 - $t_{\bar{u}}$ Standard instance utilization (i.e., utilization rate that keeps CPU credit balance constant)

Bursting instances (I)

• Credit-based bursting instance types (*T*)

Formal Model – Basic Definitions (1)

- Peak performance level
- Baseline performance level

Department of Informatics - s.e.a.l.

- CPU credits available
- Replenishment rate per hour (when CPU idle)
- Depletion rate per hour (when CPU non-idle)
- Startup credits (initial credits on VM startup)
- Credit limit (max amount of credits)

Lower number represents better performance

Page 23

٠

 $i \in I$ $i^t \in T$

 $s_p(t) \in \mathbb{R}^+$

 $s_b(t) \in \mathbb{R}^+$

 $t_r \in \mathbb{N}^+$ $t_d \in \mathbb{N}^+$

 $t_s \in \mathbb{N}^+$

 $t_m \in \mathbb{N}^+$

 $i_c \in \mathbb{R}^+$

Formal Model – Basic Definitions (2)

- Standard Instance Utilization (ū) (i.e., utilization rate that keeps the instance credit account constant)
- Utilization level (i.e., percentage of time a user wants to operate a bursting instance at peak performance level)
- Hourly costs (US \$ per started billing time unit)
- Arithmetic mean of all 50 benchmark observations $~ar{m}$
- Relative standard deviation in percent

 $c(t) \in \mathbb{R}^+$

 m_{σ}

 $t_{\bar{u}}$

Page 24

UCC

Formal Model – Performance-Cost Metrics

• Performance-cost ratio

$$pcr(t) = \frac{\bar{m}}{c(t)}$$

Unit: medium-instance equivalents per US dollar and hour

• Utilization-normalized performance-cost ratio

$$unpcr(t, u) = \frac{pcr(t)}{\lceil \frac{u}{t \, \overline{u}} \rceil} \sum_{\substack{\text{Number of required instances to operate at peak performance, given u (e.g., 10x t2.micro for u=100)}}$$

Intuitively: costs of operating a cluster of bursting instances, so that one instance can always be operated at peak performance under the assumed utilization level u

Contributions

1. Basic formal model for credit-based bursting behavior

peak performance level $s_p(t) \in \mathbb{R}^+$ baseline performance level $s_b(t) \in \mathbb{R}^+$ $pcr(t) = \frac{\bar{m}}{c(t)}$ $unpcr(t, u) = \frac{pcr(t)}{\left\lceil \frac{u}{t_{\pi}} \right\rceil} \quad u \in [0; 100]$

2. Empirical study of performance behavior

	t2.micro (0.014 \$ / hour)		t2.small (0.028 \$ / hour)		t2.medium (0.056 \$ / hour)	
	s_p	s_b	s_p	s_b	s_p	s_b
\bar{m} (CPU)	2.06	0.21	1.98	0.41	3.99	0.87
m_{σ} (CPU)	3%	8%	4%	6%	5%	6%

3. Comparison with current/previous generation instances (performance/cost)

4. Potential uses cases for practitioners

