
Bachelor
March 20, 2015

Cloud WorkBench
A Web-Based Framework for Benchmarking

Cloud Services

Joel Scheuner
of Muensterlingen, Switzerland (10-741-494)

supervised by
Prof. Dr. Harald C. Gall

Dr. Philipp Leitner, Jürgen Cito

software evolution & architecture lab

Bachelor

Cloud WorkBench
A Web-Based Framework for Benchmarking

Cloud Services

Joel Scheuner

software evolution & architecture lab

Bachelor
Author: Joel Scheuner, joel.scheuner@uzh.ch
Project period: 04.03.2014 - 14.08.2014

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

This bachelor thesis constitutes the last milestone on the way to my first academic graduation. I
would like to thank all the people who accompanied and supported me in the last four years of
study and work in industry paving the way to this thesis. My personal thanks go to my parents
supporting me in many ways. The decision to choose a complex topic in an area where I had no
personal experience in advance, neither theoretically nor technologically, made the past four and
a half months challenging, demanding, work-intensive, but also very educational which is what
remains in good memory afterwards.

Regarding this thesis, I would like to offer special thanks to Philipp Leitner who assisted me
during the whole process and gave valuable advices. Moreover, I want to thank Jürgen Cito
for his mainly technologically-related recommendations, Rita Erne for her time spent with me on
language review sessions, and Prof. Harald Gall for giving me the opportunity to write this thesis
at the Software Evolution & Architecture Lab at the University of Zurich and providing fundings
and infrastructure to realize this thesis.

Abstract
Cloud computing has started to play a major role in IT industry and the numerous cloud providers
and services they offer are continuously growing. This increasing cloud service diversity, espe-
cially observed for infrastructure services, demands systematic benchmarking in order to assess
cloud service performance and thus assist cloud users in service selection. However, manually
conducting cloud benchmarks is time-consuming and error-prone. Therefore, previous work ad-
dressed these problems with automation approaches but has failed to provide a convenient way
to automate the process of installing and configuring a benchmark.

In order to solve this benchmark provisioning problem, this thesis introduces a benchmark
automation framework called Cloud WorkBench (CWB) where benchmarks are entirely defined
by means of code and executed without manual interaction. CWB allows to define configurable
benchmarks in a modular manner that are portable across cloud providers and their regions. New
benchmarks can be added at runtime and variations thereof are conveniently configurable via a
web interface. Integrated periodic scheduling capabilities timely trigger benchmark executions
that automatically acquire cloud resources, prepare and run the benchmark, and release previ-
ously acquired resources. CWB is used to conduct a case study in the Amazon EC2 cloud to ex-
amine a very specific performance characteristic for a combination of different service types. The
results reveal limitations of the cheapest service type, show that performance does not necessar-
ily correlate with service pricing, and illustrate that a new service type at the time of conducting
this case study is able to reduce variability and enhance performance. CWB has already executed
nearly 20000 benchmarks in total and is used in ongoing research.

Zusammenfassung

Cloud Computing spielt zunehmend eine wesentliche Rolle in der IT-Branche und die zahlreichen
Cloud Anbieter und deren Dienste wachsen kontinuierlich. Diese steigende Vielfalt an Cloud
Diensten, insbesonderes von Infrastruktur-Diensten, erfordert systematisches Benchmarking, um
die Leistung der Dienste einzuschätzen und dadurch Cloud Benutzer in der Diensteauswahl zu
unterstützen. Benchmarks manuell durchzuführen ist jedoch zeitaufwändig und fehleranfällig.
Daher haben bisherige Studien Lösungsansätze mittels Automatisierung vorgeschlagen. Keiner
dieser Ansätze bietet jedoch eine komfortable Lösung um den Installations- und Konfigurations-
prozess von Benchmarks zu automatisieren.

Um dieses Benchmark-Bereitstellungsproblem zu lösen, führt diese Arbeit ein Automations-
framework für Benchmarks, genannt Cloud WorkBench (CWB), ein, das Benchmarks vollständig
mittels Code definiert und ohne manuelle Interaktion ausführt. CWB ermöglicht konfigurierba-
re Benchmarks in modularer Weise zu definieren, die über die Grenzen der Anbieter und deren
Regionen hinaus ausführbar sind. Neue Benchmarks können zur Laufzeit hinzugefügt werden
und Variationen davon sind komfortabel über eine Web-Oberfläche konfigurierbar. Integrierte
periodische Zeitpläne lösen zeitgerecht Benchmark-Ausführungen aus, die automatisch Cloud
Ressourcen erwerben, den Benchmark vorbereiten und durchführen, und zuvor erworbene Res-
sourcen wieder freigeben. CWB wird verwendet, um eine Fallstudie in der Amazon EC2 Cloud
durchzuführen und dabei ein sehr spezifisches Leistungsmerkmal für eine Kombination unter-
schiedlicher Diensttypen zu analysieren. Die Resultate zeigen Einschränkungen des günstigsten
Diensttyps auf, zeigen, dass die Leistung nicht zwangsläufig mit dem Dienstpreis korreliert, und
illustrieren, dass ein zum Durchführungszeitpunkt der Fallstudie neuer Diensttyp die Variabilität
reduzieren und die Leistung verbessern kann. CWB hat insgesamt bereits nahezu 20000 Bench-
marks ausgeführt und wird in laufender Forschung eingesetzt.

Contents

1 Introduction 1
1.1 Goals and Contributions . 2
1.2 Thesis Outline . 2

2 Background 3
2.1 Definition of Cloud Computing . 3
2.2 Taxonomy of Cloud Services . 4

2.2.1 IaaS Services . 5
2.2.2 PaaS Services . 5
2.2.3 SaaS Services . 6

2.3 Taxonomy of IaaS Cloud Benchmarks . 6
2.3.1 Micro-Benchmarks . 7
2.3.2 Application Benchmarks . 9
2.3.3 State of the Art Cloud Benchmarks . 11

2.4 Tools for Cloud Deployment . 12
2.4.1 Chef . 12
2.4.2 Vagrant . 12

3 Cloud WorkBench 15
3.1 Overall System Architecture . 15
3.2 Anatomy of a Benchmark . 17
3.3 Benchmark Execution . 18
3.4 Benchmark State Model . 18
3.5 Types of Benchmark Results . 19
3.6 Implementation and Deployment . 21

3.6.1 Web Application . 21
3.6.2 Provisioning Service . 22
3.6.3 Deployment in the Cloud . 22

4 Case Study 25
4.1 Method . 25
4.2 Results and Discussion . 26
4.3 Threats to Validity . 28

5 Related Work 31
5.1 Comparison with Cloud WorkBench . 32

6 Conclusion 33

viii Contents

A Endnotes 35

B Abbreviations 39

Contents ix

List of Figures
2.1 Taxonomy of Cloud Services . 4
2.2 Taxonomy of IaaS Cloud Benchmarks . 7

3.1 Architecture Overview . 16
3.2 Interactions of a Benchmark Execution . 18
3.3 State Model of a Benchmark Execution . 20
3.4 Responsive Web Interface . 21

4.1 Sequential Write Bandwidth by Instance and Storage Type 27
4.2 Sequential Write Bandwidth of Single Executions over Time 29

List of Tables
2.1 SaaS Services . 6
2.2 Computation Micro-Benchmarks . 8
2.3 I/O Micro-Benchmarks . 8
2.4 Network Micro-Benchmarks . 9
2.5 Memory Micro-Benchmarks . 9
2.6 Web Application Benchmarks . 10
2.7 Data-intensive Application Benchmarks . 10
2.8 HPC Application Benchmarks . 11
2.9 Desktop Application Benchmarks . 11

4.1 Experiment Resources . 26
4.2 Sequential Write Bandwidth Variability (1 GiB) . 28

x Contents

Chapter 1

Introduction

Cloud computing [AFG+09, BBG11] introduced a new paradigm that has the potential to fun-
damentally impact the IT industry. In cloud computing, resources, such as Virtual Machines
(VMs), programming environments, or entire application services, are acquired on a pay-per-
use basis. Recent literature mentions the revolutionary effect [GVB13, GSR13] of this disrup-
tive [CCVK13, SBC+13, MC13] but still rapidly developing paradigm on the IT industry and the
fact that cloud computing is already part of the strategy of major companies in IT industry such
as Microsoft [Nad14] indicates its overall importance.

The large number of emerging Infrastructure-as-a-Service (IaaS) providers and new services
they offer make selecting an appropriate cloud service a challenge. In the IaaS model "processing,
storage, networks, and other fundamental computing resources" [MG11] are acquired on a pay-per-use
basis and most commonly in the form of VMs. The functional similarities of these services are
contrasted by significant variations in non-functional properties. Service performance not only
varies between providers, as studies listed in [FJV+12] show, but also for services exhibiting the
same specification [GLOT13]. Under these conditions, software engineers obtain the best results
for service selection in terms of accuracy and relevance by running the actual (i.e., real world)
application in the cloud. However, systematic benchmarking (i.e., performance testing) of ac-
tual applications is practically rarely possible without spending extraordinary time and financial
expenses. Therefore, representative benchmarks are chosen to estimate the performance of the
actual application.

Systematic cloud benchmarking is an elaborate task and demands automation in order to ef-
ficiently conduct various benchmarks. Although representative benchmarks are typically much
easier to deploy and execute on cloud services than actual applications, testing multiple providers
with variable configurations results in a large parameter space to explore, making this kind of
benchmarking still labor intensive. Moreover, in fast moving cloud environments, continuous
reevaluation is inevitable. Therefore, several research projects [SHG+13, JKC+13, CMS13] aim-
ing at extensible cloud experiment automation were recently introduced to alleviate this prob-
lem. They all facilitate systematic cloud benchmarking but none of them provides a satisfac-
tory solution for the benchmark installation and configuration problem. Time-consuming bench-
mark preparation was identified as recurring problem especially for application benchmarks
in [CUWS11] and application deployment in general was mentioned as a key challenge for cloud
computing in [MVML13]. Since many benchmarks are not specifically designed for the cloud,
they suffer from the same problems [ZL11] as actual applications do. The common approach
to address these problems involves manually creating VM images for each benchmark, cloud
provider and region. However, this approach does not suffice to conduct systematic benchmark-
ing at large scale.

2 Chapter 1. Introduction

1.1 Goals and Contributions
The previous section motivates the following research question:

How can a web-based framework support experimenters in defining, scheduling,
and executing IaaS cloud benchmarks?

This wide-ranging research question is refined into two sub-questions:

Research Question I:
How can common IaaS cloud benchmarks from literature be defined in a modular

and portable manner?

Research Question II:
How can benchmarks from research question I be periodically scheduled and
reproducibly executed in cloud environments without manual interaction?

In order to answer these questions this thesis introduces a framework called Cloud Work-
Bench (CWB) that is designed and implemented to fulfill the requirements implied by the research
questions. Furthermore, a case study with a sample benchmark demonstrates the capabilities of
CWB.

This thesis makes the following three contributions:
1. It provides a taxonomy of cloud services and IaaS cloud benchmarks with corresponding

examples from literature.

2. It introduces CWB, a web-based framework to define, schedule, and execute cloud bench-
marks.

3. It presents the results of a case study with a micro-benchmark conducted by using CWB.

1.2 Thesis Outline
The remainder of this thesis is structured as follows. Chapter 2 provides theoretical and techno-
logical background information. Chapter 3 introduces the developed CWB framework. Chapter 4
discusses the results of a sample benchmark that was defined and executed with CWB. Chapter 5
relates this contribution to existing work in the area and finally Chapter 6 concludes this thesis
and outlines future work.

Chapter 2

Background

This chapter is a compilation of literature in the areas of cloud computing and cloud benchmark-
ing and gives some technological background for the next chapter describing the CWB frame-
work.

2.1 Definition of Cloud Computing
There has been no commonly accepted definition for cloud computing in literature for several
years as mentioned in [VRMCL08, Hil09, AI10, BBG11]. Although still not completely accepted,
with the publication of the final National Institute of Standards and Technology (NIST) definition
from the U.S. Department of Commerce in 2011, this has become the most cited definition:

"Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and re-
leased with minimal management effort or service provider interaction [MG11]."

This definition covers five essential characteristics:

• On-demand self-service. Computing resources can be acquired and released at any time in
a fully automated manner [MG11, ZL11]. This ability eliminates the up-front commitment
to a fixed hardware capacity allowing consumers to scale up and down according to their
needs [AFG+09].

• Rapid elasticity. Rapid elasticity allows to adapt the capacity of the acquired computing re-
sources within a short time. Customers have the illusion of unlimited computing resources
being available almost instantly [AFG+09].

• Utility-based pricing. Computing resources are metered and charged based on the actual
usage. This pay-per-use or alternatively pay-as-you-go business model enables short-term
usage without contractual bindings or up-front investments [BKKL09, ZCB10, AFG+09].

• Resource pooling. Cloud service providers massively exploit economies of scale with huge
datacenters serving many different customers concurrently [AFG+09,ZCB10]. The complex-
ity of such multi-tenant environments is abstracted and computing resources are offered to
customers as services with well defined interfaces [HK11].

• Broad network access. The computing resources available over the network are generally
accessible over the internet by any type of device [ZCB10]. Cloud computing datacenters

4 Chapter 2. Background

are geographically distributed across the world in order to achieve high availability and
quality of service.

The definition provided above describes cloud computing as a model which should point out
that cloud computing is no new technology as it is often misunderstood [SASA+11]. Instead,
cloud computing builds upon existing technologies such as virtualization [ZCB10] and exploits
existing trends such as the ubiquitous network connectivity [Hil09]. Thus, cloud computing is
closely related to existing paradigms such as grid or cluster computing as described in [ZCB10,
BYV+09].

Another important implication of cloud computing is the increasing focus on horizontal scal-
ability. When horizontally scaling-up, also called scaling-out, additional computing resources
are used which contrasts vertical scalability where the computing power of existing resources is
increased. The cloud computing characteristics foster the trend from vertical to horizontal scal-
ability. For example, by rapidly acquiring and releasing resources on demand, cloud users can
exploit cost associativity since running one instance for 1000 hours costs the same as running 1000
instances for one hour [AFG+09]. Cloud providers achieve resource pooling to this extent by uti-
lizing commodity hardware. Therefore, continuous failures should be treated as usual in cloud
environments and handled appropriately.

2.2 Taxonomy of Cloud Services
This section classifies cloud services based on cloud computing literature and concrete cloud ser-
vices review. Basically, cloud services are commonly categorized into the following three layers
as shown by Figure 2.1:

1. IaaS constitutes the fundamental layer that offers virtualized low-level compute, storage,
and network resources. Its users have usually full control over nearly the entire software
stack and fine grained configuration options [KSHD13, AFG+09].

2. Platform-as-a-Service (PaaS) is the middle layer that offers a managed environment for
building and deploying applications in the cloud [HK10]. Its users control their applications
but have no direct access to the underlying hardware and software infrastructure [MG11].

3. Software-as-a-Service (SaaS) as topmost layer offers fully functional applications or services.
Its users can neither control individual applications nor access the underlying infrastructure
[MG11].

Figure 2.1: Taxonomy of Cloud Services

Cloud Services

SaaSPaaS

ProcessingMessagingObject
Storage

DatabaseWeb
Application

IaaS

NetworkBlock
Storage

Compute

2.2 Taxonomy of Cloud Services 5

Although the terms IaaS, PaaS, and SaaS have become relatively common, the borders be-
tween these layers are still quite blurred. Various attempts to extend this layered model [YBS08,
RCL09, dOBM10, KSHD13] seem to increase the confusion around all the different XaaS terms
even more. Therefore, for clarity, this thesis will stick to the common IaaS, PaaS, and SaaS termi-
nology.

2.2.1 IaaS Services
The IaaS model exposes the underlying node-based hardware infrastructure [KSHD13] and can
be categorized into compute, block storage, and network services.

Compute. Compute services offer CPU and GPU processing time in the form of VMs. Ama-
zon Elastic Compute Cloud (EC2)1 has made this kind of service popular and subsequently many
new services have started to emerge. Currently, beside the market leader Amazon EC2, major ser-
vices include Microsoft Azure2 and Google Compute Engine3 [LTG+14]. Rackspace4 is especially
known for its open source infrastructure based on OpenStack5 and numerous smaller providers
such as CloudSigma6 are present at the market.

Block Storage. Block storage services offer virtual disks that can be attached to VMs. Although
they often come with a preinstalled file system on top, block-level access is granted to cloud
users for this kind of storage. Sometimes cloud users can choose between cheaper Hard Disk
Drive (HDD) storage and faster Solid State Disk (SSD) storage. Examples of block storage services
are Amazon Elastic Block Storage (EBS)7 and Rackspace Cloud Block Storage8.

Network. Networking services offer fine grained configuration options covering Virtual Private
Network (VPN), IP addresses, subnets, routing tables, and network gateways. An example for
this kind of service is Amazon VPC9.

2.2.2 PaaS Services
The PaaS model abstracts the underlying node-based infrastructure [KSHD13] and provides tools
and extensive APIs to support developers in building software. Its services sometimes offer ad-
ditional features such as automatic scaling, load-balancing and replication [AI10] but always re-
quire development effort to create entire applications. These services can be further categorized
into platforms for web applications, databases, object storage, messaging, and processing.

Web Application. Platforms for web applications allow developers to focus on the business
logic. They are no longer responsible for infrastructure installation and maintenance but may
be limited by certain restrictions imposed by the service providers. Commonly, the business
logic must be stateless [AFG+09] and file system access is restricted to prevent scalability issues.
Examples of web application platforms include Google App Engine10, AWS Elastic Beanstalk11,
Engine Yard12, OpenShift13, Heroku14, Azure Web Apps15, and Salesforce1 Platform16 which was
formerly called force.com.

Database. Database platforms offer relational and non-relational NoSQL database services. De-
velopers can focus on the data model and database interactions while the database management
is abstracted and only restricted configuration options are exposed.

Offering this convenience for traditional relational database systems is challenging due to
the limited horizontal scalability of ACID conform databases in cloud environments. Given that

6 Chapter 2. Background

clouds must gracefully handle network failures, according to the CAP theorem [GL02], cloud
providers must sacrifice either consistency or availability [BKKL09]. Although recent findings
in research alleviate this problem with advanced techniques that deal with network partitioning
[Bre12], users should be aware of the trade-off a specific service has made. Examples of relational
database services include Azure SQL17, Amazon RDS18, and Google Cloud SQL19

NoSQL database services exhibit good scale-out capabilities and are sometimes specifically
designed for clouds [Mah13, FAK+12]. Examples of such services are Amazon DynamoDB20,
Amazon SimpleDB21, Azure Table Store22, Google Cloud Datastore23, and Google BigQuery24.

Object storage. Object storage platforms are designed to store large chunks of data. The data
is typically organized in a flat namespace within some kind of buckets. In contrast to low-level
IaaS block storage, these services are accessed via a web API and handle complex features such
as replication transparently. Examples of object storage platforms include Amazon S325, Google
Cloud Storage26, Azure Blob Store27, and Rackspace Cloud Files28.

Messaging. Messaging services facilitate collaboration among multiple cloud services. For ex-
ample, Amazon SQS29 can be used as reliable message bus with high throughput to decouple
application components such as web front-ends from long-running background processing logic.

Processing. Processing platforms offer computation capabilities via an abstract computation
model that allows to describe processing jobs. In contrast to IaaS, abstract processing jobs do not
expose their underlying node-based infrastructure. In Amazon’s Elastic MapReduce30 for exam-
ple, MapReduce jobs can be submitted and are transparently processed in a distributed manner.
Another example with a more generic processing model is PiCloud31.

2.2.3 SaaS Services
The SaaS model offers entire applications running on cloud infrastructures as a service accessible
via a web interface [MG11]. Such services are often well-known from everyday life. Table 2.1
provides some examples of SaaS services categorized by application domain. This list could be
arbitrarily extended as there is a vast number of cloud services available via internet.

Table 2.1: SaaS Services

Application Domain Examples
Collaboration Dropbox32, Box33, Evernote34, Basecamp35

Productivity Google Apps36, Microsoft Office 36537

CRM Salesforce1 Sales Cloud38, Microsoft Dynamics CRM39

Social Networks Facebook40, Google+41

Multimedia Youtube42, Flickr43

Graphics and Design Adobe Creative Cloud44

2.3 Taxonomy of IaaS Cloud Benchmarks
This section shortly introduces cloud benchmarking and subsequently classifies IaaS cloud bench-
marks based on cloud benchmarking literature review.

2.3 Taxonomy of IaaS Cloud Benchmarks 7

IaaS Cloud Benchmarks

Application

DesktopHPCData-intensiveWeb

Micro

ScalingMemoryNetworkI/OComputation

Figure 2.2: Taxonomy of IaaS Cloud Benchmarks

The goal of a cloud benchmark is to assess the performance of a service offered by a cloud
provider. Conducting this task is called benchmarking, the service being benchmarked is the
System Under Test (SUT) and the benchmark components managing the execution and initiating
the workload are called drivers [FAS+13].

Figure 2.2 shows that cloud benchmarks can be categorized into micro- and application bench-
marks. Micro-benchmarks "measure performance of primitive operations supported by" [Zha01] the
cloud service. They typically generate a high artificial workload for a specific computing re-
source [Gre13]. In contrast, application benchmarks measure entire application stacks whose
overall performance is influenced by many aspects. The used workloads typically aim at sim-
ulating real-world scenarios. Finally, this section concludes by discussing state of the art cloud
benchmarks from contemporary literature.

2.3.1 Micro-Benchmarks
Micro-benchmarks can be particularly useful to examine causes of performance bottlenecks but
are unable to estimate actual application performance on its own. They often consist of small
pieces of code and typically report the mean of repetitive executions. In the following, micro-
benchmarks are further categorized by the cloud operation types they specifically measure, and
examples with references to their usage in cloud benchmarking literature are provided.

Computation. General purpose (CPU) and graphical processing (GPU) computation capabili-
ties of cloud VMs are determined by the instance type offered from the cloud provider. Varying
VM specifications among cloud providers make the comparison of their computation capabilities
difficult. Processor sharing strategies [WN10], applied to increase tenant concurrency for certain
instance types, even exacerbate this comparison. Computation micro-benchmarks can reveal fun-
damental CPU and GPU performance. They typically report the number of low-level operations
per time such as Giga Floating Point Operations per Second (GFLOPS) or Giga Operations per
Second (GOPS) for integer operations. Some benchmarks have their own scoring metrics and
others measure the calculation time for predefined workloads as the examples in Table 2.2 show.

I/O. Cloud providers offer a variety of different block-based storage types. Instance storage, di-
rectly available on the VM, can be extended with dedicated block storage that is cloud-internally
connected over the network. I/O micro-benchmarks can help selecting the best storage type for a
given application by conducting performance analysis of read and write operations. Thereby, two
types of I/O benchmarks are differentiated. Disk I/O benchmarks measure the raw performance
of the physical disk whereas file system I/O benchmarks are targeted at the overall file system
which includes caching, buffering and asynchronous I/O optimization mechanisms. I/O bench-
marks are usually configurable with parameters such as operation type (sequential or random) or

8 Chapter 2. Background

Table 2.2: Computation Micro-Benchmarks

Benchmark Metrics Sample Usage
LINPACK GFLOPS for linear equations [GLOT13]
HPCC/HPL45

(High-Performance
Linpack)

GFLOPS for linear equations [AM10, NB09, OIY+10,
IOY+11, JRM+10]

LAPACK46 by ATLAS47 GFLOPS for vector and matrix
operations

[AM10]

HPCC/DGEMM
[LBD+06]

GFLOPS of double precision
real matrix-matrix multiplica-
tion

[OIY+10, IOY+11, JRM+10]

LMBench48 (Suite of
micro-benchmarks for
various operation types)

Many e.g., GOPS for integer op-
erations, GFLOPS for floating
point operations

[OIY+10, IOY+11, Gre13]

UnixBench49 Benchmark score [OZN+12]
Coremark50 Benchmark score [SHG+13]
Simplex Completion time in ms [SASA+11]
SHOC [DMM+10] (GPU) GFLOPS, GB/s, completion

time in seconds
[ETR+13]

block size. Typically, bandwidth and latency are reported as examples from literature in Table 2.3
show.

Table 2.3: I/O Micro-Benchmarks

Benchmark Metrics Sample Usage
Bonnie/++51 Completion time in seconds,

bandwidth in KB/s for sequen-
tial I/O

[GLOT13, FJV+12, OIY+10,
SDQR10]

FIO52 Flexible I/O Tester Bandwidth in KB/s for sequen-
tial I/O

[SASA+11]

Filebench53 Bandwidth in KB/s, latency in
milliseconds

[IHJ11, WJC+10]

Postmark [Kat97] Completion time in seconds of
writing files

[IHJ11, WJC+10]

Dbench54 Bandwidth in KB/s [OZN+12]

Network. Networking performance depends on many parameters that are abstracted by the
cloud provider. Thus, cloud users are limited in optimizing the network performance since prop-
erties such as the underlying physical structure or the overall workload in the datacenter are
unknown. Networking micro-benchmarks can reveal bottlenecks in the large number of connec-
tion possibilities in the cloud. Such benchmarks may cover incoming and outgoing connections
for different providers, regions, and availability zones within a region. Typical metrics are band-
width, latency, and reliability as examples from literature in Table 2.4 show.

2.3 Taxonomy of IaaS Cloud Benchmarks 9

Table 2.4: Network Micro-Benchmarks

Benchmark Metrics Sample Usage
iperf55 Bandwidth in MB/s, latency via

Round Trip Time (RTT) in mil-
liseconds

[GLOT13, FJV+12, LYKZ10a,
HZK+10, BK09]

netperf56 Bandwidth in KB/s [SHG+13]
mpptest57 Message passing bandwidth in

bits per second, latency in mi-
croseconds

[Wal08, GLOT13]

ping Latency via RTT in milliseconds [WN10, LYKZ10a]
Badabing [SBDR05] Reliability via loss frequency

and loss rate, latency in millisec-
onds

[WN10]

Memory. Memory micro-benchmarks in the cloud are basically the same as in non-cloud envi-
ronments with the exception of clustered scenarios. Typical metrics include bandwidth, latency
and number of operations (read/write/update) per time. Table 2.5 shows examples used in liter-
ature.

Table 2.5: Memory Micro-Benchmarks

Benchmark Metrics Sample Usage
HPCC/STREAM58 Bandwidth in MB/s [SASA+11, GLOT13, OIY+10,

IOY+11, TMV+11, JRM+10]
HPCC/RandomAccess59

Giga Updates per Sec-
ond (GUPS)

[OIY+10, IOY+11, JRM+10]

CacheBench60 [MLT98]
(Cache)

Bandwidth in MB/s [IOY+11, OIY+10]

Redis61 Requests per second for SET and
GET operations

[OZN+12]

Scaling. Requesting cloud resources takes a certain amount of time before they are ready to use.
Scaling micro-benchmarks measure this time differing between providers and services [MH12].
These benchmarks are especially useful in optimizing scale-out applications that acquire resources
on demand to cover peak load periods. Studies examining the VM startup time in seconds
are [MH12, LYKZ10a, GVB13, SHG+13].

2.3.2 Application Benchmarks
Application benchmarks are used to estimate the performance of actual applications. They reveal
performance issues but are unable to identify the root causes. Typical metrics include completion
time and throughput for predefined workload scenarios. They can be further distinguished by
the type of application they aim to represent.

10 Chapter 2. Background

Web. Currently, web application benchmarks are the most important type of cloud benchmarks.
Binnig et al. [BKKL09] proposed "that a new cloud benchmark should be based on a e-commerce sce-
nario" and the IT industry is especially interested in cost efficiency studies with web application
benchmarks. Such benchmarks deploy entire sample web applications and define representative
web interaction patterns for different workload scenarios. Reported metrics focus on throughput,
system resource usage, and cost efficiency, as the examples from literature in Table 2.6 show.

Table 2.6: Web Application Benchmarks

Benchmark Metrics Sample Usage
CloudStone
[SSS+08]

Dollars per user per month [SSS+08]

RUBiS62 CPU usage over time, Service Level Agree-
ment (SLA) violation rate

[GGW10, SSGW11,
JSM+12]

RUBBoS63 Throughput in requests per second, CPU uti-
lization, response time in seconds

[JMQ+11]

TPC-W64 Throughput via requests per second, costs
per Web Interactions Processed per Second
(WIPS)

[KKL10, CCVK13]

DayTrader65 Throughput via transactions per second,
CPU usage, disk usage

[UN10, SHG+13]

SPECweb200566 CPU usage, network bandwidth in MB/s [LW09]
httperf67 [MJ98] Throughput via number of responses de-

pending on number of requests
[OZN+12]

Wikipedia
workload

Throughput via requests per second [UN10]

Data-intensive. Data-intensive application benchmarks are getting more important with the
hype of "Big Data" [LF13] and the massive amount of data being collected. They help to assess
performance and thus estimate completion time for large processing tasks operating on enormous
datasets. Processing such amounts of data demands for massive parallelism which is the reason
why data-intensive benchmarks usually exhibit cluster topologies. These kind of benchmarks
typically underly sequential disk I/O performance bottlenecks [SBV+09] and involve the chal-
lenging simulation of enormous datasets. Table 2.7 shows examples of data-intensive application
benchmarks.

Table 2.7: Data-intensive Application Benchmarks

Benchmark Metrics Sample Usage
Hadoop
HiBench

Throughput via number of tasks completed
per minute, job latency in seconds, CPU us-
age, memory usage, disk usage

[HHD+10, SHG+13]

GridMix Execution time of MapReduce jobs [WJC+10]

2.3 Taxonomy of IaaS Cloud Benchmarks 11

HPC. High Performance Computing (HPC) application benchmarks are mainly applied in re-
search. They cover performance analysis of complex computation-intensive real-world applica-
tions such as physical particle simulations or climate prediction models. Workloads, well-suited
for supercomputers, are horizontally distributed across many cloud instances. This typically de-
grades HPC application performance due to networking bottlenecks [HZK+10]. Table 2.8 shows
examples of HPC application benchmarks.

Table 2.8: HPC Application Benchmarks

Benchmark Metrics Sample Usage
NAS parallel68

[BBB+91]
Completion time [Wal08, AM10, RBD+12]

PARSEC
[BKSL08]

Completion time, throughput in tasks per
second

[WJC+10, IHJ11]

SPLASH-2
[WOT+95]

No results presented [LZK+11]

NAMD
ApoA169 (GPU)

Simulation rate in days per nanoseconds,
speedup with increasing number of instances

[ETR+13]

MC-GPU70

(GPU)
Completion time in seconds, speedup with
increasing number of instances

[ETR+13]

Desktop. Desktop application benchmarks are executed on a single VM and may be used to
estimate the performance of a VM in general or of a specific programming language environment
running on a VM. Table 2.9 shows examples of Desktop application benchmarks.

Table 2.9: Desktop Application Benchmarks

Benchmark Metrics Sample Usage
DaCapo71

[BGH+06]
Completion time [RMP10]

Linux kernel
compilation

Completion time, CPU usage, memory usage [BK09, ERR10]

SPECjvm200872 Operations per second [ŠS11]

2.3.3 State of the Art Cloud Benchmarks
Traditional benchmarks such as TCP-W do not suffice to analyze the performance of cloud ser-
vices. Binnig et al. [BKKL09] motivated the need for new benchmarks that are specifically de-
signed for cloud environments. Such a new benchmark should take the characteristics of cloud
computing into account. For example, environment constraints limit the control over the SUT,
weaken database consistency guarantees, and require fault tolerant benchmark design. Further-
more, cloud features, such as scalability and pay-per-use, make some existing metrics and work-
loads obsolete and demand for new cost-based metrics and scale-out workloads.

According to Jia et al. [JWZ+13], the state of the art benchmark designed for scale-out work-
loads is currently CloudSuite73 [FAK+12]. CloudSuite is a collection of benchmarks covering dif-

12 Chapter 2. Background

ferent classes of applications including the web serving CloudStone [SSS+08] benchmark. The
CloudStone benchmark aims at representing modern Web 2.0 applications whose interactive
workloads differ from static Web 1.0 page serving. Even though CloudStone was designed with
Web 2.0 interaction patterns in mind, a study in 2011 [CUWS11] has shown that popular web
sites contain significantly more multimedia and interactive content than CloudStone. Therefore,
application benchmarks and their workloads must be continuously adapted in order to stay rep-
resentative, which is especially true for dynamic cloud environments.

2.4 Tools for Cloud Deployment
Tools can help to efficiently manage cloud environments. Deploying software (e.g., benchmarks)
in IaaS clouds on demand involves two areas suited to be supported by existing tools. Firstly, the
installation and configuration of software (i.e., provisioning) within acquired cloud VMs can be
automated and secondly, the VM environment itself (i.e., the lifecyle of cloud VMs) can be man-
aged. In the following, tools that cover provisioning (Chef) and VM environment management
(Vagrant) are presented.

2.4.1 Chef
Chef74 is an industry-leading [SBC+13], open source75 configuration management tool with a
proprietary enterprise extension. It allows to describe the desired state of a node (i.e., physical
or virtual machine) using a declarative syntax and automatically converges nodes to this desired
state in an idempotent manner. Chef is used by prominent companies such as Facebook to manage
cloud infrastructure at large scale [Che13, Dib13].

Chef supports two different modes. In the Chef-client mode a single Chef server manages the
configuration of client nodes. Each node fetches its configuration from the server and applies it
during the Chef-client run. In the Chef-solo mode the configuration is pushed to a node before
executing the Chef-solo run. Chef-solo requires no dedicated Chef server but only supports a
subset of the features of the client-server mode.

Chef configurations are modularized into cookbooks. A cookbook is a module of infrastruc-
ture code similar to what a gem is in Ruby or a Maven project is in Java. It is versioned and may
have dependencies, platform constraints and other metadata. In its core a cookbook consists of
at least one recipe that specifies which resources are applied to a node in which order. Recipes
are written in the internal Domain Specific Language (DSL) [Cun08] for describing infrastructure
state. This DSL is implemented in Ruby and therefore offers the full flexibility of the Ruby pro-
gramming language. A resource, expressed in this DSL, describes the desired state of a specific
configuration item on a node. An example for a resource is a file that should be created on the
node based on a predefined template. In order to enhance reusability of cookbooks, Chef provides
a sophisticated attribute mechanism.

2.4.2 Vagrant
Vagrant76 is an open source77 tool written in Ruby to manage VM environments. Its initial ver-
sion aimed at supporting the creation of local VirtualBox78 development environments in a re-
producible manner and with minimal manual effort. With version 1.179, a plugin architecture has
been introduced to support multiple providers. As of July 2014, Vagrant plugins are available
for more than 10 cloud providers80 including the popular public clouds Amazon EC281, Google
Compute Engine82, Microsoft Azure (formerly Windows Azure)83, and Rackspace84.

2.4 Tools for Cloud Deployment 13

Vagrant provides an internal DSL implemented in Ruby for describing VM environments in
a configuration file called Vagrantfile. Various configuration options are available depending on
the provider. Local providers such as VirtualBox allow detailed VM instance and network spec-
ifications whereas cloud providers such as Amazon EC2 have limited options in choosing from
predefined instance types and geographic regions. With a single command, a set of VM instances
can be automatically allocated and configured according to previously specified options.

Industry-standard provisioners such as Chef or Puppet85 are supported in order to install and
configure software on VMs. The Chef-client provisioner for example connects to a Chef server,
fetches the node specific cookbooks and applies them to the node.

The command-line interface offers various commands useful for managing virtual environ-
ments. Depending on the actions available for specific providers, VMs can be suspended, halted,
and destroyed. Furthermore, remote commands can be executed via Secure Shell (SSH). Thereby,
authentication is abstracted and transparently handled by Vagrant via the provided configura-
tion.

Chapter 3

Cloud WorkBench

This chapter describes the CWB framework for defining, scheduling, and executing benchmarks
in its structure, interactions, implementation, and deployment. After giving an overview over the
overall system architecture, it details how a benchmark is defined, what happens in which order
when a benchmark is executed, what states a benchmark execution can take, and what type of
benchmark results are reported. Finally, some implementation details reveal how the employed
technology contributes to CWB.

3.1 Overall System Architecture
Defining and executing a benchmark with CWB involves interactions among five components
as illustrated by Figure 3.1. The workstation is the web client device of the experimenter used to
define benchmarks via the provisioning service and the CWB web interface which subsequently
allows to schedule and manage executions of benchmarks. The CWB server is the main com-
ponent consisting of a three-tiered web application. It provides the web interface, implements
the business logic in collaboration with external dependencies, and stores its data in a relational
database. The provider API of a IaaS cloud provider is used to acquire and release cloud resources
that are most importantly cloud VMs (i.e., VM instances in the cloud). The cloud VM is usually
the SUT, may contain the benchmark driver, and is supported by a custom CWB client utility li-
brary. The provisioning service manages VM configurations and provides a query API that enables
configuring benchmarks exhibiting multi-VM topologies.

The CWB business logic builds upon external dependencies for providing benchmark schedul-
ing capabilities and managing the lifecyle of cloud VMs. The latter responsibility is fulfilled by
the extensible VM environment manager. In its core, the VM environment manger offers generic,
provider-independent VM lifecycle functionality such as provisioning or remote command execu-
tion. Cloud provider plugins extend the core by implementing concrete IaaS cloud provider APIs
to acquire and release cloud VMs and optionally manage additional provider-specific resources.

The CWB server and the cloud VMs interact with each other in order to control the execution
of a benchmark. On one side, the CWB server prepares the benchmark by orchestrating VM
provisioning which in turn includes interaction with the provisioning service. Additionally, the
CWB server is responsible for starting the benchmark and initiating postprocessing of benchmark
results on the cloud VM. On the other side, the cloud VM uses the CWB client library to notify
state updates and submit metrics (i.e., observed benchmark results) back to the CWB server.

The architecture of CWB is based on the following principles:
• CWB is a framework and therefore designed for extensibility. It focuses on providing the

infrastructure for defining, scheduling, and executing benchmarks. For this purpose, it de-

16 Chapter 3. Cloud WorkBench

CWB Server

Web Interface

Provisioning Service

REST REST

Upload
Configuration

Access
Web Interface Business Logic

VM Environment
Manager

Cloud Provider
Plugin

Core

Sc
he

du
le

r

Relational Database

C
W

B
C

lie
nt

 L
ib

ra
ry

C
lo

ud
 V

M

Pr
ov

id
er

 A
PI

Acquire/
Release

Resources

Provision VMs +
Execute Remote

Commands

Fetch Configuration +
Query Index

Notify State +
Submit Metrics

IaaS Provider

W
or

ks
ta

tio
n

Figure 3.1: Architecture Overview

3.2 Anatomy of a Benchmark 17

fines an interface and offers utilities to define a new benchmark with minimal effort. Ex-
perimenters are intended to create their own benchmarks as CWB has no predefined bench-
marks with the exception of one sample benchmark.

• CWB does not reinvent the wheel and therefore builds upon existing tools. External soft-
ware is abstracted by CWB wherever possible and exposed to the experimenter where jus-
tified by major enhancements in functionality.

• CWB is intended to offer its capabilities via a web interface that requires no local installation
and can be accessed from any device.

3.2 Anatomy of a Benchmark

New benchmarks can be defined entirely through provisioning configurations and the CWB web
interface. Provisioning configurations handle benchmark installation and multi-VM topology
setup. For proper interaction with CWB, such user-defined configurations must adhere to the
CWB framework interface. The CWB web interface then allows to create different variations of a
benchmark, declare benchmark metrics, and schedule benchmark executions. These responsibili-
ties are detailed in the following paragraphs.

CWB motivates experimenters to build their benchmarks with provisioning configurations.
Thereby, the benchmark specific installation process is described by means of code making this
process reproducible, modularizable, flexible, and testable by using software engineering tech-
niques. Common components among benchmarks can be easily shared and provisioning con-
figurations from a large provisioning service community can be reused to efficiently describe
the benchmark installation. Multi-VM topologies require dynamic configuration since newly ac-
quired cloud VMs receive a priori unknown IP addresses. To overcome this issue, cloud VMs can
query the provisioning service’s indices to retrieve data such as IP addresses about other VMs.

CWB defines an interface to handle interactions with user-defined benchmarks. Each bench-
mark must implement a hook (i.e., a piece of code) to start its run and should use the provided
CWB client utility library to notify state updates (e.g., when the benchmark run is completed)
and submit metrics to the CWB server. The CWB client library consists of a simple Ruby class
that issues HTTP requests to the Representational State Transfer (REST) API of the CWB server.
It is transparently installed and configured via provisioning configurations on each cloud VM to
facilitate interaction with the CWB server.

Variations of a benchmark can be fully specified via the CWB web interface once the initial
benchmark setup is completed, that is the provisioning configurations for benchmark installation
are uploaded to the provisioning service. New variations are created either based on a generic
template or by cloning an existing benchmark entity. Such a benchmark variation is mainly de-
scribed by a concise VM environment DSL that specifies the cloud resources required in order
to execute the benchmark and configures provisioning that handles benchmark installation. Cre-
ating a new benchmark entity further demands choosing a unique name, specifying a bench-
mark running timeout and selecting a supported cloud provider. Additionally, metrics that a
benchmark will produce should be defined by name, type, and unit before benchmark executions
are triggered manually via the web interface or automatically by a benchmark schedule. Such a
schedule is expressed in the Cron syntax and associated with a benchmark entity.

18 Chapter 3. Cloud WorkBench

Figure 3.2: Interactions of a Benchmark Execution

3.3 Benchmark Execution
Figure 3.2 illustrates the interactions when a new benchmark execution is triggered from the ex-
perimenter or the scheduler. Subsequently, a plugin of the VM environment management tool
asynchronously acquires cloud resources that are most importantly cloud VMs but may also
comprise cloud specific features such as dedicated block storage86 or dynamically mapped IP
addresses87. As soon as the VM environment management tool successfully managed to establish
a remote shell connection to the cloud VM, it starts orchestrating the VM provisioning via the
remote shell connection. Thereby, each cloud VM fetches its role dependent configurations from
the provisioning service and applies them. At this point, the benchmark is entirely prepared for
running and asynchronously started via a remote shell command. This command invokes a pro-
gramming language independent hook script that new benchmarks have to provide. Once the
benchmark workload is completed, the hook script should notify this state update to the CWB
server via the CWB client library. The benchmark results are then postprocessed, which typically
involves textual result extraction, and submitted to the CWB server as individual metrics or as a
collection of metrics via a Comma-Separated Values (CSV) file. After completed work, the cloud
VM notifies the state update to the CWB server in order to trigger all resources being released.

3.4 Benchmark State Model
The event-based state model for benchmark executions is designed to present enough informa-
tion to the experimenter so that he is able to track the flow of an execution and understand its
current state. Events are stored in the database and subsequently used to calculate the state of
the execution. This approach has the advantage of providing multiple perspectives, that is an
event- and state-based view, from the same data. It further allows to associate additional data
with events such as a timestamp of occurrence, an error code, and a textual message which can be
used to store error logs. Concrete events and their corresponding states for benchmark executions

3.5 Types of Benchmark Results 19

were identified based on the data useful to logically track an execution and the data technically
available or possible to retrieve in some reliable way. The following paragraphs present the state
model illustrated in Figure 3.3.

An execution is created either manually via the web interface or automatically via a schedule.
It is then WAITING FOR START PREPARING until the CWB server has processing capabilities
available to start preparation. Immediately before starting preparation, the event started preparing
is fired and subsequently, during preparation, the execution is in the PREPARING state. Unex-
pected and therefore unhandled exceptions during preparation cause the execution to enter the
FAILED ON PREPARING state and release the acquired resources after a configurable timeout has
been elapsed. This timeout gives the experimenter the opportunity to activate the interactive de-
velopment mode, fix any provisioning errors, and reprovision the cloud VMs again. Interactive
development mode introduces additional events and states that are not covered here as they are
only relevant during development of a benchmark. After an execution has finished preparing it is
WAITING FOR START RUNNING until the CWB server has free processing capabilities available.
The benchmark run is then started on the cloud VM via a remote shell command resulting in a
started running event in case of success and failed on running event and state on failure. Failures
on start running and failures described in the following are treated the same way as failures on
preparing, that is the acquired resources are released after a timeout has been elapsed.

A successfully started benchmark is RUNNING until a cloud VM notifies its completion or
the specified running timeout from the benchmark definition has been elapsed. In the latter case
the execution is being treated as FAILED ON RUNNING since it failed to complete within the ex-
pected time duration. The FAILED ON RUNNING state can also be reached if a cloud VM detects
and notifies a failure. After finished running, a cloud VM may either immediately continue with
postprocessing or enter the WAITING FOR START POSTPROCESSING state until the CWB server
has processing capabilities available to trigger start postprocessing. This indirection is aimed to
support multi-VM benchmarks where the responsibilities for recognizing benchmark completion
and postprocessing are taken by distinctive cloud VMs. Subsequently, postprocessing follows the
pattern of asynchronously executed remote commands (e.g., running the benchmark) and releas-
ing resources follows the pattern of locally executed commands (e.g., preparing the benchmark).
Releasing resources differs in exception handling because failures must be resolved manually by
the experimenter since, beside retrying multiple times, there is no appropriate exception strat-
egy applicable to automatically solve this problem. Executions without any failures remain in
the FINISHED state after having finished releasing resources. Executions that exhibit at least one
failure show their first failure state so that the experimenter can easily recognize at what step an
execution has failed.

3.5 Types of Benchmark Results

The observed results of a benchmark execution, so called metrics, are represented differently
based on the type of their definition. Metric definitions follow the established classification of
nominal, ordinal, interval, and ratio scale from [Ste46]. Nominal scale metrics are stored as String
data types whereas metrics of the other scale types are represented as floating point data types.
This distinction enables efficient sorting at database level whereas presenting a uniform interface
to the rest of the application by abstracting the implementation detail.

20 Chapter 3. Cloud WorkBench

Trigger
Execution

WAITING FOR
START PREPARING

WAITING FOR
START RELEASING RESOURCES

Created

PREPARING

Started Preparing

WAITING FOR
START RUNNING

Finished Preparing

RUNNING

Started Running

WAITING FOR
START POSTPROCESSING

Finished Running
and Wait

POSTPROCESSING

Started Postprocessing

Finished Running
and Continue

Finished Postprocessing

RELEASING RESOURCES

Started Releasing Resources

FINISHED

Finished Releasing Resources

FAILED ON
PREPARING

FAILED ON
RUNNING

FAILED ON
RELEASING RESOURCES

FAILED ON
POSTPROCESSING

FAILED ON
START POSTPROCESSING

FAILED ON
START POSTPROCESSING

Timeout Elapsed

Figure 3.3: State Model of a Benchmark Execution

3.6 Implementation and Deployment 21

3.6 Implementation and Deployment
The CWB web application is implemented with the Ruby on Rails88 framework. Its business logic
builds upon Cron as scheduler and Vagrant as VM environment management tool. Chef con-
tributes industry-leading provisioning capabilities to CWB and offers essential features to con-
duct multi-VM benchmarks. Finally, the whole system is optimized for deployment in the cloud.

CWB is available as an open source project on Github at:
https://github.com/sealuzh/cloud-workbench

This repository comprises the CWB server, several example benchmarks as Chef cookbooks,
and infrastructure code to automatically provision CWB. Detailed instructions are covered in the
corresponding documentation.

3.6.1 Web Application
The web interface takes advantage of the popular Bootstrap89 front-end framework and is visually
enhanced with an open source90 template and custom styling. It provides basic CRUD operations
for the application entities where meaningful, context dependent tabular listing of entities, CSV
export functionality, some basic search and filter operations, and live log refresh via Ajax. Fig-
ure 3.4 shows its ability to adapt to different types of devices by dynamically rearranging the user
interface elements appropriately.

Figure 3.4: Responsive Web Interface

The business logic, implemented in the Ruby91 programming language, mainly focuses on
automating the benchmark execution. For this purpose, it operates on Rails application entities
that are described with a relational data model. This model basically separates data that per-
sists across multiple benchmark executions (e.g., metric type) from execution related data (e.g.,
observed benchmark result). Additionally, the business logic encapsulates the external depen-
dencies Vagrant and Cron whose usage is detailed in the following paragraphs. In doing so,
interactions with Vagrant involve long-running operations such as benchmark preparation that
are unsuitable to be processed within the typical request/response model for web applications.
Asynchronous background job processing is necessary in order to keep the web interface respon-

https://github.com/sealuzh/cloud-workbench

22 Chapter 3. Cloud WorkBench

sive and handle automatically scheduled jobs. Therefore, this kind of jobs is separated from the
web server processes and executed in a dedicated pool of worker processes.

VM Environment Manager. Vagrant was chosen as a VM environment management tool since
it provides a lot of functionality that CWB demands and otherwise would have to be implemented
from scratch. It abstracts cloud provider APIs, provisioning orchestration, and the execution of
remote shell commands. Although losing some flexibility, for example regarding the VM state
information available, the Ruby DSL of Vagrant exposes the relevant configuration options in a
declarative manner. Vagrant is successfully used in the Test Kitchen92 test harness tool in a similar
way as in CWB and thus follows the principle of building onto existing software as described in
Section 3.1.

Scheduler. Cron, a UNIX system utility program for running periodically scheduled jobs, is
used as scheduler to timely trigger benchmark executions. The periodic schedule is defined via
the Cron expression syntax that allows to specify time intervals for minutely-, hourly-, daily-
(in context of month and week), and monthly-based executions. The experimenter can directly
enter a Cron expression in the web interface as a schedule. All active schedules are reflected into
the operating system Cron utility which subsequently triggers new benchmark executions at the
specified times.

3.6.2 Provisioning Service
Choosing Opscode Chef with a dedicated Chef server as provisioning service solves the problem
of installing the CWB client library and more importantly provides a flexible way to install and
configure benchmark components in a reusable manner by exploiting Chef attributes. Experi-
menters can reuse software components (e.g., databases) in terms of cookbooks from a large Chef
community and easily share benchmark infrastructure code with others. They manage cookbooks
from their workstation once some initial authentication setup has been done.

Furthermore, Chef integrates particularly well with Vagrant. The attribute passing mechanism
from Vagrant to Chef allows to build configurable and thus reusable benchmark cookbooks. Since
both, Chef and Vagrant, use an internal Ruby DSL, they not only ensure language consistency
across the project but also offer the capabilities of a fully featured programming language that
is exploited with the use of variables and utility functions. Finally, Chef was preferred over the
competitor Puppet mainly because of its querying capabilities and the knowledge that the open
source version has been proven to work well as first-hand personal experience and information
from [Dib13] has shown. The querying capabilities of the Chef-client mode are essential in order
to support multi-VM benchmarks that require dynamic IP address configuration.

3.6.3 Deployment in the Cloud
CWB aims to be easily installable, configurable, and deployable on UNIX based operating sys-
tems in cloud environments. The installation of CWB commonly involves two separate machines
including one for the CWB server and another for the Chef server. Installing the CWB web appli-
cation for a production environment requires setting up a relational database, a Ruby application
server, and a web proxy server. In addition to such a typical Ruby on Rails application setup,
the CWB server must manage background worker processes, install Chef and Vagrant includ-
ing its plugins, and configure all this software consistently. Deploying the web application code
into the CWB server raises the configuration complexity even further. Since a manual installation
would be too time-consuming and error-prone, the installation and deployment process of CWB

3.6 Implementation and Deployment 23

is automated following the principles of Infrastructure-as-Code [Hüt12]. Automation of the in-
stallation and configuration process is implemented with Vagrant and Chef-solo and deployment
is automated using Capistrano93. Finally, with the exception of some initial authentication and
IP address configuration, CWB can be fully installed, configured, and deployed for operational
usage on a new VM instance in the cloud with just a few shell commands.

Chapter 4

Case Study

This chapter describes experiments with a disk I/O micro-benchmark in the Amazon EC2 cloud
conducted by using CWB. The goal of this study is to assess and compare the raw sequential
write bandwidth of three general purpose instance types in combination with two dedicated block
storage types. Specifically, it aims to answer the following questions regarding raw sequential
write performance:

1. When do larger instance types perform better than smaller instance types?

2. When should larger instance types be preferred over the better block storage type?

3. How do instance types and block storage types influence performance variability?

4.1 Method
The data for this study was collected between June 20th and 23th in 2014 distributed over the day.
Experiments were repeated for each setting 8 to 12 times depending on the observed variability.

Cloud Resources. All experiments were conducted in the Amazon EC2 region Ireland (eu-
west-1) using the official Ubuntu 14.04 VM image from Canonical94 publicly available as Amazon
EC2 AMI with the identifier ami-896c96fe. Table 4.1a summarizes the specification of the used
instance types with their current (June 23, 2014) prices95. Additionally, 20 GB of Amazon EBS was
provisioned for each instance. Table 4.1b shows the two types of EBS storage used in the experi-
ments. The general purpose storage type (gp2) was just announced 3 days before conducting the
first experiments. Thus, this is the first study analyzing this newly available storage type.

Benchmark. The Flexible I/O Tester (FIO)96 benchmark was chosen for several reasons. Its
usage in literature indicates suitably for testing cloud infrastructures. Furthermore, it is under ac-
tive development and offers many configuration options which is useful to adapt the benchmark
to cloud environments and demonstrate the configuration capabilities of CWB. This study used
the version 2.1.10 of the FIO benchmark compiled from source with gcc 4.8.2. Sequential write
is performed with workloads of 1 Gibibyte (GiB) (∼1074 MB) and 4 GiB (∼4295 MB) using the
default block size of 4 KiB (4096 bytes). Direct I/O mode is used in order to assess the raw write
performance ignoring caches. Additionally, the refill buffers mode is enabled in order to prevent
SSD compression effects.

26 Chapter 4. Case Study

Table 4.1: Experiment Resources

(a) Amazon EC2 Instances

Instance
Type

Networking
Performance

Price per
Hour

t1.micro Very Low 0.020$
m1.small Low 0.047$

m3.medium Moderate 0.077$

(b) Amazon EBS Types

EBS Type Pricing
Magnetic

Volumes
0.055$ per GB per month

(rounded hourly)
0.055$ per 1 million

I/O requests
General

Purpose (SSD)
0.11$ per GB per month

(rounded hourly)

Cloud WorkBench. A Chef cookbook was created that describes the FIO benchmark in a con-
figurable manner. It automatically installs the benchmark and makes its parameters configurable
via the CWB web interface by leveraging the Chef attribute model. This cookbook also generates
Ruby code to start the execution, postprocess the results, submit the observed metrics, and notify
state updates to the CWB server. Thereby, two metrics are defined and reported. Firstly, the CPU
model name and secondly, a log of the bandwidth with the resolution of 500 milliseconds.

4.2 Results and Discussion
In the following, each case study question from above is answered by presenting and discussing
the obtained results. Subsequently, further observations are noticed and the obtained results are
compared with existing results from literature.

1. When do larger instance types perform better than smaller instance types?
Raw sequential write performance increases by about factor 4 for both EBS types when upgrading
from the smallest instance type t1.micro to the next larger instance type m1.small or the even larger
instance type m3.medium. Figure 4.1 illustrates this performance increase but also reveals that
larger instance types (m3.medium) do not necessarily perform better than smaller instance types
(m1.small).

The large difference between the smallest instance type t1.micro and the larger instance types
m1.small and m3.medium may be explained with resource sharing and limited networking ca-
pabilities of the t1.micro instance type. As the only instance type from Amazon EC2, t1.micro
shares its single CPU with another tenant. Therefore, it only gets half of the CPU cycles at max-
imum [WN10] which may affect the disk I/O performance [Gre13]. Networking performance
influences the disk I/O performance since block storage is connected to the VM instance over
the network. The networking performance specification provided by Amazon is very vague as
shown by Table 4.1a. Thus, a potentially significantly slower networking performance of t1.micro
may degrade its disk I/O performance. In order to assess these assumptions, further studies may
correlate disk I/O performance with CPU and networking performance.

2. When should larger instance types be preferred over the better block storage type?
Larger instance types should be preferred over the better block storage type when using a t1.micro
instance type. This is shown by Figure 4.1 since the absolute performance gain is much higher
when upgrading from t1.micro to m1.small (+2750 KB/s) than when upgrading from the standard
to the general purpose storage type (+250 KB/s). The combination of m1.small with standard
EBS will cost more than t1.micro with general purpose EBS for block storage sizes below 350

4.2 Results and Discussion 27

t1.micro m1.small m3.medium

KB
/s

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

Standard EBS
General Purpose EBS (SSD)

750
1000

3500

5500

3000

6000

Figure 4.1: Sequential Write Bandwidth by Instance and Storage Type

GBs. However, without considering I/O operation expenses, the cost/performance ratio is al-
ways better for the m1.small and standard EBS combination. Disk I/O intensive applications with
more than one million I/O requests per hour can shift this ratio in favor of the other combination
(t1.micro with general purpose EBS).

Contrary, the better block storage type should be preferred over larger instance types when
using a m1.small instance type. General purpose EBS can improve the performance of a m1.small
instance type while the performance remains approximately the same when upgrading to the
larger m3.medium instance type. Additionally, the cost/performance ratio is always better with
the m1.small and general purpose EBS combination. Considering the expenses for I/O requests
will even increase this advantage.

These results indicate that standard EBS is limited to approximately 3500 KB/s whereas the
performance of the t1.micro instance type is restricted for other reasons. Similarly, general purpose
EBS reaches approximately 6000 KB/s with the two larger instance types whereas its performance
is restricted to about 1000 KB/s by the t1.micro instance type.

3. How do instance types and block storage types influence performance variability?
Although, in general, the disk I/O performance varies remarkably, two patterns were recognized
when comparing the variability across and within distinct benchmark executions for different
types of VM instances and EBS. Firstly, standard EBS exhibits larger variability than general
purpose EBS for all instance types across and within distinct benchmark executions as shown by
Table 4.2. Secondly, the t1.micro instance type exhibits a much larger variability within but not
across distinct benchmark executions compared to the larger instance types. Table 4.2 shows this
unusually high performance variability of 20 to 50 % for both EBS types within single benchmark
executions for the t1.micro instance type.

The fact that this extraordinary high variability is equalized across distinct benchmark execu-
tions supports the assumption that CPU scheduling negatively influences the performance since

28 Chapter 4. Case Study

the CPU scheduling effect is only recognizable in the high resolution performance analysis con-
ducted within single benchmark executions.

Table 4.2: Sequential Write Bandwidth Variability (1 GiB)

t1.micro m1.small m3.medium
Standard EBS 20% (20-50%) 20% (10-20%) 30% (15-60%)
General Purpose EBS (SSD) 10% (20-40%) 10% (5-15%) 10% (5-10%)

The variability is given as standard deviation in percentage of the mean across and within (in
brackets) distinct benchmark executions.

Variability within executions is mostly ignored in literature and only the average value of sin-
gle executions are collected. Although this makes sense in general, analyzing single executions in
detail can help to better understand the nature of disk I/O performance. Figure 4.2 compares the
sequential write performance over time for single executions of the instances types t1.micro and
m1.small in combination with standard and general purpose EBS. It illustrates strong oscillation
for both instance and storage types. This common behavior appears in combination with sudden
performance drops that may turn out even stronger and endure even longer than illustrated by
the curve m1.small with standard EBS especially around minute 15. In addition, this curve ex-
emplifies the unpredictable performance behavior of standard EBS exhibiting arbitrary ups and
downs. On the contrary, the bandwidth for general purpose EBS typically oscillates around the
mean but still periodically drops in performance.

Further Observations. The observed CPU model name metrics have shown variability within
the same instance type. Repeatedly acquiring the same instance types resulted in different CPU
types being served for some instance types. This known phenomena from literature happened
particularly often for the t1.micro instance type but also occasionally occurred for other instance
types. The insufficient number of samples available made it impossible to correlate hardware
specification with the measured performance as it was done for CPU performance in [LML+11].
Ou et al. [OZN+12] analyzed this kind of hardware heterogeneity in detail and presented strate-
gies to exploit this phenomena. Such "placement gaming" strategies were further extended in
[FJV+12].

Comparision with Existing Results. Salah et al. [SASA+11] conducted a comparable exper-
iment with the same benchmark three years ago. Although the used CPU type matches with
contemporary t1.micro instances, the overall instance type specification is rather comparable with
contemporary small, medium, or even large instance types. In this sense, the results of this case
study indicate sequential write performance improvements compared to the reported 2540 KB/s
from 2011.

4.3 Threats to Validity
The small number of 8 to 12 samples per setting exhibiting high variability limits the statistical
expressiveness of the results. Block storage volumes were not erased completely before running
the benchmark as suggested by Amazon97 in order to optimize performance. By analyzing raw
sequential write performance, this study focused on a very specific performance aspect that may
help to estimate bulk I/O-intensive application performance but has limited representativeness

4.3 Threats to Validity 29

0 5 10 15 20

0
20

00
40

00
60

00

min

KB
/s

m1.small + General Purpose EBS
m1.small + Standard EBS
t1.micro + General Purpose EBS
t1.micro + Standard EBS

Figure 4.2: Sequential Write Bandwidth of Single Executions over Time

on its own. In particular, many reasons (e.g., file system caching) could cause a mismatch be-
tween raw disk I/O and application I/O performance [Gre13]. Consequently, the results are less
relevant for web applications whose majority of I/O request are typically served by much faster
file system optimized I/O [Gre13]. The results should also be interpreted as a "snapshot-view"
of a dynamic cloud computing environment. As a common issue in cloud benchmarking, con-
tinuously changing cloud infrastructures threaten reproducibility which apparently became true
with Amazon’s announcement of new instance types98 shortly after the experiments were com-
pleted. Individual sample experiments revealed a potential performance increase for micro and
small instance types with standard EBS.

Chapter 5

Related Work

The need for supporting experimenters that conduct benchmarks in cloud environments have
been recognized in literature and recently emerging studies focusing on automation frameworks
indicate active research. Studies whose goals most closely match those of CWB include Cloud-
Bench [SHG+13], Expertus [JSM+12, JKC+13], and Cloud Crawler [CMS13]. Despite pursuing
similar objectives, different approaches were chosen.

CloudBench99 [SHG+13] proposes a mainly imperative approach [CMS13] for defining bench-
marks at different levels of abstraction. New benchmarks are defined via a high-level experiment
plan, one or multiple medium-level application or workload templates, and multiple low-level
hook shell scripts. An experiment plan describes the behavior of a benchmark over time and is
able to model joining and leaving VMs during an execution. Templates configure roles, hook shell
scripts, and load distributions. Hook shell scripts are used to setup and orchestrate the benchmark
execution. Furthermore, CloudBench offers its capabilities via a command line interface, a service
API, and a graphical web interface. It also integrates a distributed and scalable metric collection
system. The authors claim that CloudBench can "represent and benchmark almost every observable
interaction of a cloud" [SHG+13]. Comprehensive literature review has shown that CloudBench
is currently the most sophisticated and extensive approach. Especially its capabilities to execute
complex and dynamic scale-out benchmarks, as demanded in [BKKL09,CST+10,FAK+12], makes
CloudBench unique.

Expertus, introduced in [JSM+12] and extended in [JKC+13], proposes a code generation
based approach for defining benchmarks. New benchmarks are defined via XSLT100 templates
that generate shell scripts for the individual cloud VMs. Expertus further provides benchmark
and workload configurability via XML, large-scale metric collection and a web interface with
interactive visualization and statistical analysis capabilities.

Cloud crawler [CMS13] proposes a declarative approach for defining benchmarks. New bench-
marks are defined via its own external DSL using a YAML101 based syntax. Additionally, each
benchmark must extend the Crawler execution engine by implementing a Java interface.

The following work matches similar goals than CWB. However, all of these approaches exhibit
at least one major difference. They cannot be easily extended with additional benchmarks, require
human interaction during benchmark execution, or are limited to certain types of benchmarks.

Smart CloudBench [CCVK13] provides a web interface to choose, configure, execute, and an-
alyze predefined application benchmarks. Although mentioning its extensibility capabilities, ex-
perimenters are limited to the predefined benchmarks as the authors do not describe how to
define new benchmarks. CloudHarmony102, described in [GLOT13], further abstracts the idea
pursued in Smart CloudBench and offers on demand execution of predefined benchmarks as a
paid service . The large amount (more than 200 benchmarks with different configurations avail-
able as of July 2014) of predefined micro- and application benchmarks available alleviates the

32 Chapter 5. Related Work

disadvantage of not being able to define new benchmarks. CloudCmp [LYKZ10b,LYKZ10a] is an
open source103 tool that systematically compares different cloud providers based on predefined
representative workloads. Adding new benchmarks would require implementing a Java class
that satisfies an undocumented interface.

Cloud-Gauge [ERR10] provides a web interface to manage benchmark executions, integrates
real-time VM monitoring, but is restricted to private clouds. OLTP-Bench [DPCCM14,CDPCM12]
is an open source104 framework that automates benchmarking databases in the cloud with config-
urable workloads but does not integrate acquiring and releasing VM resources. C-Meter [YIEO09]
focuses on describing and submitting workloads to experimenter managed cloud resources. It is
used and extended with integrated VM resource management and metric analysis in [Ant12].
The CloudStone [SSS+08] web application benchmark is bundled with non-integrated automa-
tion scripts for preparation and tear down actions compatible with the Amazon EC2 cloud.

5.1 Comparison with Cloud WorkBench
None of the previously described approaches is known to offer provisioning capabilities to the
same extent and with the same modularity as CWB does. There is also no solution known that
integrates periodic scheduling functionality into a web-based framework. Furthermore, CWB
together with CloudBench are the only frameworks designed for benchmark extensibility at run-
time.

CloudBench supports portable benchmarks across cloud providers via its own provisioning
solution using shell scripts. However, this approach has several limitations that are mainly orig-
inated in the nature of the shell scripting language. Its missing language features make sharing
code among benchmarks difficult. The resulting duplication especially affects the maintainability
of benchmark dependencies and is even aggravated by conditional, operating system or cloud
provider specific code. CWB alleviates these problems by leveraging industry-leading provision-
ing technology with Chef. This also facilitates benchmark definition and development since there
are tools available to debug and test infrastructure code. Finally, the integrated Ruby program-
ming language is much more expressive and flexible than pure shell scripts.

The code generation approach from Expertus suffers from the same problems caused by shell
scripts as CloudBench. Additionally, the flexibility and extensibility gained through XML and
XSLT introduces complexity that makes debugging and describing new benchmarks difficult.
CWB should be able to define benchmarks and its configuration much more concise by exploiting
the convention over configuration design paradigm when reusing existing benchmark compo-
nents or software packages available from the Chef community.

With Cloud Crawler, experimenters must manually provide VM images with preinstalled and
preconfigured benchmarks. This approach does not scale for systematic benchmarking of mul-
tiple cloud providers having multiple regions. CWB solves this problem with Chef and further-
more provides an easier way to define new benchmarks than Cloud Crawler. The internal Ruby
DSL of the Vagrantfile achieves similar expressiveness as the external YAML-based DSL of Cloud
Crawler but offers more flexibility. Defining a new benchmark with Cloud Crawler is also too
cumbersome and cannot be realized at runtime as it requires implementing a Java-based inter-
face.

Chapter 6

Conclusion

This thesis presented a web-based framework called Cloud WorkBench (CWB) that supports ex-
perimenters in conducting IaaS cloud benchmarks. CWB was designed and implemented to au-
tomate the benchmarking lifecycle from the definition to the execution of benchmarks. Its exten-
sibility allows to add additional benchmarks at runtime and support new cloud providers with
minimal effort. Currently, CWB is tested with two cloud providers (Amazon EC2 and Google
Compute Engine), has already executed nearly 20000 benchmarks completely autonomous, and
is successfully used in an ongoing large-scale cloud evaluation.

In the following, the research questions from the first chapter are revisited:

Research Question I:
How can common IaaS cloud benchmarks from literature be defined in a modular

and portable manner?

Cloud benchmarks are entirely defined by means of code making them configurable for reuse
in a modular manner and portable across cloud providers and their regions. Hereby, benchmarks
can easily share components among each other and even build upon existing software packages
from a large community of the provisioning service. The CWB web interface contributes to mod-
ularity even further by allowing to easily create and configure variations of a benchmark. Overall,
this generic approach is capable to model a wide diversity of micro- and application benchmarks
exhibiting single- and multi-VM topologies. However, it has no integrated support for scale-out
benchmarks that dynamically acquire and release cloud resources during their executions.

Research Question II:
How can benchmarks from research question I be periodically scheduled and
reproducibly executed in cloud environments without manual interaction?

Standard system utilities and existing tools were combined to build a fully automated bench-
mark execution environment with periodic scheduling capabilities that is manageable via a web
interface. The integrated provisioning service solves the benchmark installation problem by com-
pletely automating benchmark provisioning in a configurable manner. Furthermore, utilities are
provided to facilitate metric collection and error handling strategies deal with most failures au-
tomatically. Thus, automation eliminates any error-prone human interactions threatening repro-
ducibility.

In order to illustrate the capabilities of CWB, a case study with a disk I/O micro-benchmark
was conducted wherein the raw sequential write performance of different types of VM instances
and block storage in the Amazon EC2 cloud were compared. Results revealed the limited capabil-
ities of the smallest instance type but has also shown that larger instance types do not necessarily
perform better than smaller instance types. In that case, a newly announced type of block storage

34 Chapter 6. Conclusion

service could be recommended to cost-efficiently improve performance and reduce performance
variability. Finally, variability within single benchmark executions and of the hardware being
served were discussed and a comparison with existing results from literature indicated perfor-
mance improvements of contemporary services.

Future Work. We plan to extend and improve CWB in a project with multiple master students.
Specifically, our plans include:

• adding and testing additional cloud providers.

• automating the collection of common metrics such as VM startup time or CPU model name.

• integrating statistical analysis and visualization capabilities.

• facilitating benchmark definition.

The ultimate goal of CWB is to support the entire benchmarking lifecycle, from benchmark
definition to the statistical analysis and visualization of the observed metrics, via a single web
interface.

Appendix A

Endnotes

All the following link were verified on July 13, 2014.
1https://aws.amazon.com/ec2/
2http://azure.microsoft.com/
3https://cloud.google.com/products/compute-engine/
4https://www.rackspace.com/cloud/
5https://www.openstack.org/
6https://www.cloudsigma.com/
7https://aws.amazon.com/ebs/
8https://www.rackspace.com/cloud/block-storage/
9https://aws.amazon.com/vpc/

10https://cloud.google.com/products/app-engine/
11https://aws.amazon.com/elasticbeanstalk/
12https://www.engineyard.com/
13https://www.openshift.com/
14https://www.heroku.com
15http://azure.microsoft.com/services/web-sites/
16https://www.salesforce.com/salesforce1/
17https://azure.microsoft.com/services/sql-database/
18https://aws.amazon.com/rds/
19https://developers.google.com/cloud-sql/
20https://aws.amazon.com/dynamodb/
21https://aws.amazon.com/simpledb/
22http://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-

how-to-use-tables/#what-is
23https://developers.google.com/datastore/
24https://cloud.google.com/products/bigquery/
25https://aws.amazon.com/s3/
26https://cloud.google.com/products/cloud-storage/

https://aws.amazon.com/ec2/
http://azure.microsoft.com/
https://cloud.google.com/products/compute-engine/
https://www.rackspace.com/cloud/
https://www.openstack.org/
https://www.cloudsigma.com/
https://aws.amazon.com/ebs/
https://www.rackspace.com/cloud/block-storage/
https://aws.amazon.com/vpc/
https://cloud.google.com/products/app-engine/
https://aws.amazon.com/elasticbeanstalk/
https://www.engineyard.com/
https://www.openshift.com/
https://www.heroku.com
http://azure.microsoft.com/services/web-sites/
https://www.salesforce.com/salesforce1/
https://azure.microsoft.com/services/sql-database/
https://aws.amazon.com/rds/
https://developers.google.com/cloud-sql/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/simpledb/
http://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-how-to-use-tables/#what-is
http://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-how-to-use-tables/#what-is
https://developers.google.com/datastore/
https://cloud.google.com/products/bigquery/
https://aws.amazon.com/s3/
https://cloud.google.com/products/cloud-storage/

36 Chapter A. Endnotes

27https://azure.microsoft.com/en-us/documentation/articles/storage-nodejs-
how-to-use-blob-storage/#what-is

28https://www.rackspace.com/cloud/files/
29https://aws.amazon.com/sqs/
30https://aws.amazon.com/elasticmapreduce/
31http://www.picloud.com
32https://www.dropbox.com
33https://www.box.com
34https://evernote.com
35https://basecamp.com/
36http://www.google.com/enterprise/apps/business/
37http://office.microsoft.com/en-001/business/office-365-online-business-

software-programs-FX102997619.aspx
38http://www.salesforce.com/
39http://www.microsoft.com/en-us/dynamics/crm.aspx
40https://www.facebook.com/
41http://www.google.com/+/learnmore/
42https://www.youtube.com/
43https://www.flickr.com/
44https://creative.adobe.com/
45http://www.netlib.org/benchmark/hpl/
46http://www.netlib.org/lapack/
47http://math-atlas.sourceforge.net/
48http://bitmover.com/lmbench/
49http://freecode.com/projects/unixbench
50http://www.eembc.org/coremark/about.php
51Bonnie: https://code.google.com/p/bonnie-64/,

Bonnie++: http://www.coker.com.au/bonnie++/
52http://git.kernel.org/cgit/linux/kernel/git/axboe/fio.git
53http://sourceforge.net/projects/filebench/
54https://www.samba.org/ftp/tridge/dbench/
55iperf2: http://iperf.sourceforge.net/,

iperf3: https://github.com/esnet/iperf
56http://www.netperf.org/netperf/
57http://www.mcs.anl.gov/research/projects/mpi/mpptest/
58http://www.cs.virginia.edu/stream/
59http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/
60http://icl.cs.utk.edu/projects/llcbench/cachebench.html
61http://redis.io/

https://azure.microsoft.com/en-us/documentation/articles/storage-nodejs-how-to-use-blob-storage/#what-is
https://azure.microsoft.com/en-us/documentation/articles/storage-nodejs-how-to-use-blob-storage/#what-is
https://www.rackspace.com/cloud/files/
https://aws.amazon.com/sqs/
https://aws.amazon.com/elasticmapreduce/
http://www.picloud.com
https://www.dropbox.com
https://www.box.com
https://evernote.com
https://basecamp.com/
http://www.google.com/enterprise/apps/business/
http://office.microsoft.com/en-001/business/office-365-online-business-software-programs-FX102997619.aspx
http://office.microsoft.com/en-001/business/office-365-online-business-software-programs-FX102997619.aspx
http://www.salesforce.com/
http://www.microsoft.com/en-us/dynamics/crm.aspx
https://www.facebook.com/
http://www.google.com/+/learnmore/
https://www.youtube.com/
https://www.flickr.com/
https://creative.adobe.com/
http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/lapack/
http://math-atlas.sourceforge.net/
http://bitmover.com/lmbench/
http://freecode.com/projects/unixbench
http://www.eembc.org/coremark/about.php
https://code.google.com/p/bonnie-64/
http://www.coker.com.au/bonnie++/
http://git.kernel.org/cgit/linux/kernel/git/axboe/fio.git
http://sourceforge.net/projects/filebench/
https://www.samba.org/ftp/tridge/dbench/
http://iperf.sourceforge.net/
https://github.com/esnet/iperf
http://www.netperf.org/netperf/
http://www.mcs.anl.gov/research/projects/mpi/mpptest/
http://www.cs.virginia.edu/stream/
http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/
http://icl.cs.utk.edu/projects/llcbench/cachebench.html
http://redis.io/

37

62http://rubis.ow2.org/
63http://jmob.ow2.org/rubbos.html
64http://www.tpc.org/tpcw/
65https://geronimo.apache.org/GMOxDOC20/daytrader.html
66http://spec.org/web2005/
67Original: http://www.hpl.hp.com/research/linux/httperf/,

Current: https://code.google.com/p/httperf/
68http://www.nas.nasa.gov/publications/npb.html
69http://www.ks.uiuc.edu/Research/namd/
70https://code.google.com/p/mcgpu/
71http://www.dacapobench.org/
72http://www.spec.org/jvm2008/
73http://parsa.epfl.ch/cloudsuite/overview.html
74http://www.getchef.com/chef/
75https://github.com/opscode/chef
76http://www.vagrantup.com/
77https://github.com/mitchellh/vagrant
78https://www.virtualbox.org/
79Vagrant changelog: https://github.com/mitchellh/vagrant/blob/master/CHANGELOG.

md
80https://github.com/mitchellh/vagrant/wiki/Available-Vagrant-Plugins#

providers
81vagrant-aws: https://github.com/mitchellh/vagrant-aws
82vagrant-google: https://github.com/mitchellh/vagrant-google
83vagrant-azure: https://github.com/MSOpenTech/Vagrant-Azure
84vagrant-rackspace: https://github.com/mitchellh/vagrant-rackspace
85http://puppetlabs.com/
86Amazon EBS storage: http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

AmazonEBS.html
87OpenStack floating IP: http://docs.openstack.org/user-guide/content/floating_

ip_allocate.html
88http://rubyonrails.org/
89http://getbootstrap.com/
90AdminLTE template: https://github.com/almasaeed2010/AdminLTE
91https://www.ruby-lang.org/
92http://kitchen.ci/
93http://capistranorb.com/
94https://cloud-images.ubuntu.com/locator/ec2/
95https://aws.amazon.com/ec2/pricing/
96http://git.kernel.org/cgit/linux/kernel/git/axboe/fio.git

http://rubis.ow2.org/
http://jmob.ow2.org/rubbos.html
http://www.tpc.org/tpcw/
https://geronimo.apache.org/GMOxDOC20/daytrader.html
http://spec.org/web2005/
http://www.hpl.hp.com/research/linux/httperf/
https://code.google.com/p/httperf/
http://www.nas.nasa.gov/publications/npb.html
http://www.ks.uiuc.edu/Research/namd/
https://code.google.com/p/mcgpu/
http://www.dacapobench.org/
http://www.spec.org/jvm2008/
http://parsa.epfl.ch/cloudsuite/overview.html
http://www.getchef.com/chef/
https://github.com/opscode/chef
http://www.vagrantup.com/
https://github.com/mitchellh/vagrant
https://www.virtualbox.org/
https://github.com/mitchellh/vagrant/blob/master/CHANGELOG.md
https://github.com/mitchellh/vagrant/blob/master/CHANGELOG.md
https://github.com/mitchellh/vagrant/wiki/Available-Vagrant-Plugins#providers
https://github.com/mitchellh/vagrant/wiki/Available-Vagrant-Plugins#providers
https://github.com/mitchellh/vagrant-aws
https://github.com/mitchellh/vagrant-google
https://github.com/MSOpenTech/Vagrant-Azure
https://github.com/mitchellh/vagrant-rackspace
http://puppetlabs.com/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
http://docs.openstack.org/user-guide/content/floating_ip_allocate.html
http://docs.openstack.org/user-guide/content/floating_ip_allocate.html
http://rubyonrails.org/
http://getbootstrap.com/
https://github.com/almasaeed2010/AdminLTE
https://www.ruby-lang.org/
http://kitchen.ci/
http://capistranorb.com/
https://cloud-images.ubuntu.com/locator/ec2/
https://aws.amazon.com/ec2/pricing/
http://git.kernel.org/cgit/linux/kernel/git/axboe/fio.git

38 Chapter A. Endnotes

97http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/benchmark_piops.html
98http://aws.amazon.com/about-aws/whats-new/2014/07/01/introducing-t2-

the-new-low-cost-general-purpose-instance-type-for-amazon-ec2/
99https://github.com/ibmcb/cbtool

100http://www.w3.org/standards/xml/transformation
101http://www.yaml.org/
102https://cloudharmony.com/benchmarks
103https://github.com/angl/cloudcmp
104https://github.com/oltpbenchmark/oltpbench

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/benchmark_piops.html
http://aws.amazon.com/about-aws/whats-new/2014/07/01/introducing-t2-the-new-low-cost-general-purpose-instance-type-for-amazon-ec2/
http://aws.amazon.com/about-aws/whats-new/2014/07/01/introducing-t2-the-new-low-cost-general-purpose-instance-type-for-amazon-ec2/
https://github.com/ibmcb/cbtool
http://www.w3.org/standards/xml/transformation
http://www.yaml.org/
https://cloudharmony.com/benchmarks
https://github.com/angl/cloudcmp
https://github.com/oltpbenchmark/oltpbench

Appendix B

Abbreviations

ACID Atomicity, Consistency, Isolation, and Durability

Ajax Asynchronous JavaScript and XML

CAP Consistency, Availability, and Partition Tolerance

CPU Central Processing Unit

CRUD Create, Read, Update, and Delete

CSV Comma-Separated Values

CWB Cloud WorkBench

DSL Domain Specific Language

EC2 Elastic Compute Cloud

EBS Elastic Block Storage

FIO Flexible I/O Tester

GFLOPS Giga Floating Point Operations per Second

GiB Gibibyte

GOPS Giga Operations per Second

GPU Graphical Processing Unit

GUPS Giga Updates per Second

HDD Hard Disk Drive

HPC High Performance Computing

IaaS Infrastructure-as-a-Service

NIST National Institute of Standards and Technology

PaaS Platform-as-a-Service

REST Representational State Transfer

RTT Round Trip Time

40 Chapter B. Abbreviations

SaaS Software-as-a-Service

SLA Service Level Agreement

SSD Solid State Disk

SSH Secure Shell

SUT System Under Test

VM Virtual Machine

VPN Virtual Private Network

WIPS Web Interactions Processed per Second

XML Extensible Markup Language

XSLT Extensible Stylesheet Language Transformation

Bibliography

[AFG+09] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H. Katz,
Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, and Matei Za-
haria. Above the clouds: A berkeley view of cloud computing. Technical Report
UCB/EECS-2009-28, EECS Department, University of California, Berkeley, Febru-
ary 2009. URL: http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/
EECS-2009-28.html.

[AI10] Syed A. Ahson and Mohammad Ilyas. Cloud Computing and Software Services: Theory
and Techniques. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 2010. URL: http:
//www.crcpress.com/product/isbn/9781439803158.

[AM10] Sayaka Akioka and Yoichi Muraoka. Hpc benchmarks on amazon ec2. In 24th IEEE
International Conference on Advanced Information Networking and Applications (AINA)
Workshops, pages 1029–1034, April 2010. doi:10.1109/WAINA.2010.166.

[Ant12] Athanasios Antoniou. Performance evaluation of cloud infrastructure using
complex workloads. Master’s thesis, Delft University of Technology, 2012. URL:
http://repository.tudelft.nl/view/ir/uuid%3Ad8eda846-7e93-
4340-834a-de3e4aa93f8b/.

[BBB+91] David H. Bailey, Eric Barszcz, John T. Barton, David S. Browning, Russell L. Carter,
Leonardo Dagum, Rod A. Fatoohi, Paul O. Frederickson, Thomas A. Lasinski, Rob S.
Schreiber, et al. The nas parallel benchmarks. International Journal of High Performance
Computing Applications, 5(3):63–73, 1991. doi:10.1177/109434209100500306.

[BBG11] Rajkumar Buyya, James Broberg, and Andrzej M. Goscinski. Cloud computing: Prin-
ciples and Paradigms, volume 87. John Wiley & Sons, March 2011. URL: http:
//eu.wiley.com/WileyCDA/WileyTitle/productCd-0470887990.html.

[BGH+06] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.
Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von
Dincklage, and Ben Wiedermann. The dacapo benchmarks: Java benchmarking de-
velopment and analysis. In Proceedings of the 21st Annual ACM SIGPLAN Conference
on Object-oriented Programming Systems, Languages, and Applications (OOPSLA ’06),
pages 169–190, 2006. doi:10.1145/1167473.1167488.

[BK09] Christian Baun and Marcel Kunze. Building a private cloud with eucalyptus. In 5th
IEEE International Conference on E-Science Workshops, pages 33–38, December 2009.
doi:10.1109/ESCIW.2009.5408006.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.crcpress.com/product/isbn/9781439803158
http://www.crcpress.com/product/isbn/9781439803158
http://dx.doi.org/10.1109/WAINA.2010.166
http://repository.tudelft.nl/view/ir/uuid%3Ad8eda846-7e93-4340-834a-de3e4aa93f8b/
http://repository.tudelft.nl/view/ir/uuid%3Ad8eda846-7e93-4340-834a-de3e4aa93f8b/
http://dx.doi.org/10.1177/109434209100500306
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470887990.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470887990.html
http://dx.doi.org/10.1145/1167473.1167488
http://dx.doi.org/10.1109/ESCIW.2009.5408006

42 BIBLIOGRAPHY

[BKKL09] Carsten Binnig, Donald Kossmann, Tim Kraska, and Simon Loesing. How is the
weather tomorrow?: Towards a benchmark for the cloud. In Proceedings of the Second
International Workshop on Testing Database Systems (DBTest ’09), pages 9:1–9:6. ETH
Zurich, 2009. doi:10.1145/1594156.1594168.

[BKSL08] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec bench-
mark suite: Characterization and architectural implications. In Proceedings of the 17th
International Conference on Parallel Architectures and Compilation Techniques (PACT ’08),
pages 72–81, 2008. doi:10.1145/1454115.1454128.

[Bre12] Eric Brewer. Cap twelve years later: How the "rules" have changed. Computer,
45(2):23–29, February 2012. doi:10.1109/MC.2012.37.

[BYV+09] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. Cloud computing and emerging it platforms: Vision, hype, and reality
for delivering computing as the 5th utility. Future Generation Computer Systems,
25(6):599–616, 2009. doi:10.1016/j.future.2008.12.001.

[CCVK13] Mohan Baruwal Chhetri, Sergei Chichin, Quoc Bao Vo, and Ryszard Kowalczyk.
Smart cloudbench – automated performance benchmarking of the cloud. In Sixth
IEEE International Conference on Cloud Computing (CLOUD), pages 414–421, June
2013. doi:10.1109/CLOUD.2013.7.

[CDPCM12] Carlo Curino, Djellel E. Difallah, Andrew Pavlo, and Philippe Cudré-Mauroux.
Benchmarking oltp/web databases in the cloud: The oltp-bench framework. In Pro-
ceedings of the Fourth International Workshop on Cloud Data Management (CloudDB ’12),
pages 17–20, 2012. doi:10.1145/2390021.2390025.

[Che13] Opscode Chef. Facebook likes opscode and private chef [online]. February 2013.
Chef announcing Facebook reference. URL: http://www.getchef.com/press-
releases/facebook-likes-opscode-and-private-chef/ [cited 2014-06-
03].

[CMS13] Matheus Cunha, Nabor Mendonça, and Américo Sampaio. A declarative environ-
ment for automatic performance evaluation in iaas clouds. In Sixth IEEE Interna-
tional Conference on Cloud Computing (CLOUD), pages 285–292, June 2013. doi:
10.1109/CLOUD.2013.12.

[CST+10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st ACM
Symposium on Cloud Computing (SoCC ’10), pages 143–154, 2010. doi:10.1145/
1807128.1807152.

[Cun08] H. Conrad Cunningham. A little language for surveys: Constructing an internal
dsl in ruby. In Proceedings of the 46th Annual Southeast Regional Conference on XX
(ACM-SE 46), pages 282–287, 2008. doi:10.1145/1593105.1593181.

[CUWS11] Emmanuel Cecchet, Veena Udayabhanu, Timothy Wood, and Prashant Shenoy.
Benchlab: An open testbed for realistic benchmarking of web applications. In Pro-
ceedings of the 2nd USENIX Conference on Web Application Development (WebApps’11),
pages 4–4. USENIX Association, 2011. URL: http://dl.acm.org/citation.
cfm?id=2002168.2002172.

http://dx.doi.org/10.1145/1594156.1594168
http://dx.doi.org/10.1145/1454115.1454128
http://dx.doi.org/10.1109/MC.2012.37
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1109/CLOUD.2013.7
http://dx.doi.org/10.1145/2390021.2390025
http://www.getchef.com/press-releases/facebook-likes-opscode-and-private-chef/
http://www.getchef.com/press-releases/facebook-likes-opscode-and-private-chef/
http://dx.doi.org/10.1109/CLOUD.2013.12
http://dx.doi.org/10.1109/CLOUD.2013.12
http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1145/1593105.1593181
http://dl.acm.org/citation.cfm?id=2002168.2002172
http://dl.acm.org/citation.cfm?id=2002168.2002172

BIBLIOGRAPHY 43

[Dib13] Phil Dibowitz. Scaling systems configuration at facebook [online]. April
2013. Keynote at ChefConf 2013 in San Francisco. URL: http://youtu.be/
SYZ2GzYAw_Q [cited 2014-06-06].

[DMM+10] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith, Philip C.
Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S. Vetter. The scalable hetero-
geneous computing (shoc) benchmark suite. In Proceedings of the 3rd Workshop on
General-Purpose Computation on Graphics Processing Units (GPGPU ’10), pages 63–74,
2010. doi:10.1145/1735688.1735702.

[dOBM10] Daniel de Oliveira, Fernanda Araujo Baião, and Marta Mattoso. Towards a tax-
onomy for cloud computing from an e-science perspective. In Cloud Computing,
Computer Communications and Networks, pages 47–62. Springer, 2010. doi:
10.1007/978-1-84996-241-4_3.

[DPCCM14] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-Mauroux.
Oltp-bench: An extensible testbed for benchmarking relational databases. Proceed-
ings of the VLDB Endowment, 7(4), 2014. URL: http://www.vldb.org/pvldb/
vol7/p277-difallah.pdf.

[ERR10] Mohamed A. El-Refaey and Mohamed Abu Rizkaa. Cloudgauge: A dynamic cloud
and virtualization benchmarking suite. In 19th IEEE International Workshop on En-
abling Technologies: Infrastructures for Collaborative Enterprises (WETICE), pages 66–75,
June 2010. doi:10.1109/WETICE.2010.17.

[ETR+13] Roberto R. Expósito, Guillermo L. Taboada, Sabela Ramos, Juan Touriño, and
Ramón Doallo. General-purpose computation on gpus for high performance cloud
computing. Concurrency and Computation: Practice and Experience, 25(12):1628–1642,
2013. doi:10.1002/cpe.2845.

[FAK+12] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Al-
isafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki,
and Babak Falsafi. Clearing the clouds: A study of emerging scale-out workloads on
modern hardware. SIGARCH Computer Architecture News, 40(1):37–48, March 2012.
doi:10.1145/2189750.2150982.

[FAS+13] Enno Folkerts, Alexander Alexandrov, Kai Sachs, Alexandru Iosup, Volker Markl,
and Cafer Tosun. Benchmarking in the cloud: What it should, can, and cannot be.
In Selected Topics in Performance Evaluation and Benchmarking, volume 7755 of Lecture
Notes in Computer Science, pages 173–188. Springer, 2013. doi:10.1007/978-3-
642-36727-4_12.

[FJV+12] Benjamin Farley, Ari Juels, Venkatanathan Varadarajan, Thomas Ristenpart,
Kevin D. Bowers, and Michael M. Swift. More for your money: Exploiting per-
formance heterogeneity in public clouds. In Proceedings of the Third ACM Symposium
on Cloud Computing (SoCC ’12), pages 20:1–20:14, 2012. doi:10.1145/2391229.
2391249.

[GGW10] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. Press: Predictive elastic resource
scaling for cloud systems. In International Conference on Network and Service Manage-
ment (CNSM), pages 9–16, October 2010. doi:10.1109/CNSM.2010.5691343.

[GL02] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2):51–59, June 2002.
doi:10.1145/564585.564601.

http://youtu.be/SYZ2GzYAw_Q
http://youtu.be/SYZ2GzYAw_Q
http://dx.doi.org/10.1145/1735688.1735702
http://dx.doi.org/10.1007/978-1-84996-241-4_3
http://dx.doi.org/10.1007/978-1-84996-241-4_3
http://www.vldb.org/pvldb/vol7/p277-difallah.pdf
http://www.vldb.org/pvldb/vol7/p277-difallah.pdf
http://dx.doi.org/10.1109/WETICE.2010.17
http://dx.doi.org/10.1002/cpe.2845
http://dx.doi.org/10.1145/2189750.2150982
http://dx.doi.org/10.1007/978-3-642-36727-4_12
http://dx.doi.org/10.1007/978-3-642-36727-4_12
http://dx.doi.org/10.1145/2391229.2391249
http://dx.doi.org/10.1145/2391229.2391249
http://dx.doi.org/10.1109/CNSM.2010.5691343
http://dx.doi.org/10.1145/564585.564601

44 BIBLIOGRAPHY

[GLOT13] Lee Gillam, Bin Li, John O’Loughlin, and Anuz Tomar. Fair benchmarking for cloud
computing systems. Journal of Cloud Computing: Advances, Systems and Applications,
2(1):6, 2013. doi:10.1186/2192-113X-2-6.

[Gre13] Brendan Gregg. Systems Performance: Enterprise and the Cloud. Prentice Hall, 2013.
URL: http://books.google.ch/books?id=pTYkAQAAQBAJ.

[GSR13] Prashant Gupta, A. Seetharaman, and John Rudolph Raj. The usage and adoption of
cloud computing by small and medium businesses. International Journal of Informa-
tion Management, 33(5):861 – 874, 2013. doi:10.1016/j.ijinfomgt.2013.07.
001.

[GVB13] Saurabh Kumar Garg, Steve Versteeg, and Rajkumar Buyya. A framework for rank-
ing of cloud computing services. Future Generation Computer Systems, 29(4):1012 –
1023, 2013. doi:10.1016/j.future.2012.06.006.

[HHD+10] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. The hibench
benchmark suite: Characterization of the mapreduce-based data analysis. In 26th
IEEE International Conference on Data Engineering Workshops (ICDEW), pages 41–51,
March 2010. doi:10.1109/ICDEW.2010.5452747.

[Hil09] David Hilley. Cloud computing: A taxonomy of platform and infrastructure-level
offerings. Technical Report GIT-CERCS-09-13, Georgia Institute of Technology,
2009. URL: http://www.cercs.gatech.edu/tech-reports/tr2009/git-
cercs-09-13.pdf.

[HK10] Christina N. Höfer and Georgios Karagiannis. Taxonomy of cloud computing
services. In IEEE Globecom Workshops, pages 1345–1350. IEEE, December 2010.
doi:10.1109/GLOCOMW.2010.5700157.

[HK11] Christina N. Höfer and Georgios Karagiannis. Cloud computing services: taxonomy
and comparison. Journal of Internet Services and Applications, 2(2):81–94, 2011. doi:
10.1007/s13174-011-0027-x.

[Hüt12] Michael Hüttermann. DevOps for Developers. Apress, 2012. doi:10.1007/978-1-
4302-4570-4_9.

[HZK+10] Qiming He, Shujia Zhou, Ben Kobler, Dan Duffy, and Tom McGlynn. Case study
for running hpc applications in public clouds. In Proceedings of the 19th ACM In-
ternational Symposium on High Performance Distributed Computing (HPDC ’10), pages
395–401, 2010. doi:10.1145/1851476.1851535.

[IHJ11] Shadi Ibrahim, Bingsheng He, and Hai Jin. Towards pay-as-you-consume cloud
computing. In IEEE International Conference on Services Computing (SCC), pages 370–
377, July 2011. doi:10.1109/SCC.2011.38.

[IOY+11] Alexandru Iosup, Simon Ostermann, Nezih Yigitbasi, Radu Prodan, Thomas
Fahringer, and Dick Epema. Performance analysis of cloud computing services for
many-tasks scientific computing. IEEE Transactions on Parallel and Distributed Sys-
tems, 22(6):931–945, June 2011. doi:10.1109/TPDS.2011.66.

[JKC+13] Deepal Jayasinghe, Josh Kimball, Siddharth Choudhary, Tao Zhu, and Calton Pu.
An automated approach to create, store, and analyze large-scale experimental data
in clouds. In 14th IEEE International Conference on Information Reuse and Integration
(IRI), pages 357–364, August 2013. doi:10.1109/IRI.2013.6642493.

http://dx.doi.org/10.1186/2192-113X-2-6
http://books.google.ch/books?id=pTYkAQAAQBAJ
http://dx.doi.org/10.1016/j.ijinfomgt.2013.07.001
http://dx.doi.org/10.1016/j.ijinfomgt.2013.07.001
http://dx.doi.org/10.1016/j.future.2012.06.006
http://dx.doi.org/10.1109/ICDEW.2010.5452747
http://www.cercs.gatech.edu/tech-reports/tr2009/git-cercs-09-13.pdf
http://www.cercs.gatech.edu/tech-reports/tr2009/git-cercs-09-13.pdf
http://dx.doi.org/10.1109/GLOCOMW.2010.5700157
http://dx.doi.org/10.1007/s13174-011-0027-x
http://dx.doi.org/10.1007/s13174-011-0027-x
http://dx.doi.org/10.1007/978-1-4302-4570-4_9
http://dx.doi.org/10.1007/978-1-4302-4570-4_9
http://dx.doi.org/10.1145/1851476.1851535
http://dx.doi.org/10.1109/SCC.2011.38
http://dx.doi.org/10.1109/TPDS.2011.66
http://dx.doi.org/10.1109/IRI.2013.6642493

BIBLIOGRAPHY 45

[JMQ+11] Deepal Jayasinghe, Simon Malkowski, Wang Qingyang, Jack Li, Pengcheng Xiong,
and Calton Pu. Variations in performance and scalability when migrating n-tier
applications to different clouds. In IEEE International Conference on Cloud Computing
(CLOUD), pages 73–80, July 2011. doi:10.1109/CLOUD.2011.43.

[JRM+10] Keith R. Jackson, Lavanya Ramakrishnan, Krishna Muriki, Shane Canon, Shreyas
Cholia, John Shalf, Harvey J. Wasserman, and Nicholas J. Wright. Performance anal-
ysis of high performance computing applications on the amazon web services cloud.
In Second IEEE International Conference on Cloud Computing Technology and Science
(CloudCom), pages 159–168, November 2010. doi:10.1109/CloudCom.2010.69.

[JSM+12] Deepal Jayasinghe, Galen Swint, Simon Malkowski, Jack Li, Qingyang Wang, Jun-
hee Park, and Calton Pu. Expertus: A generator approach to automate perfor-
mance testing in iaas clouds. In 5th IEEE International Conference on Cloud Computing
(CLOUD), pages 115–122, June 2012. doi:10.1109/CLOUD.2012.98.

[JWZ+13] Zhen Jia, Lei Wang, Jianfeng Zhan, Lixin Zhang, and Chunjie Luo. Characterizing
data analysis workloads in data centers. In IEEE International Symposium on Work-
load Characterization (IISWC), pages 66–76, September 2013. doi:10.1109/IISWC.
2013.6704671.

[Kat97] Jeffrey Katcher. Postmark: A new file system benchmark. Technical Report TR3022,
Network Appliance, Inc., 1997. URL: http://wangmir.com/content/down/
Katcher97-postmark-netapp-tr3022.pdf.

[KKL10] Donald Kossmann, Tim Kraska, and Simon Loesing. An evaluation of alternative
architectures for transaction processing in the cloud. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data (SIGMOD ’10), pages 579–
590, 2010. doi:10.1145/1807167.1807231.

[KSHD13] Steffen Kächele, Christian Spann, Franz J. Hauck, and Jörg Domaschka. Beyond
iaas and paas: An extended cloud taxonomy for computation, storage and network-
ing. In 6th IEEE/ACM International Conference on Utility and Cloud Computing (UCC),
pages 75–82, December 2013. doi:10.1109/UCC.2013.28.

[LBD+06] Piotr R. Luszczek, David H. Bailey, Jack J. Dongarra, Jeremy Kepner, Robert F. Lucas,
Rolf Rabenseifner, and Daisuke Takahashi. The hpc challenge (hpcc) benchmark
suite. In Proceedings of the ACM/IEEE Conference on Supercomputing (SC ’06), 2006.
doi:10.1145/1188455.1188677.

[LF13] Hung LeHong and Jackie Fenn. Hype cycle for emerging technologies. Gartner,
August 2013. URL: http://www.gartner.com/newsroom/id/2575515.

[LML+11] Alexander Lenk, Michael Menzel, Johannes Lipsky, Stefan Tai, and Philipp Offer-
mann. What are you paying for? performance benchmarking for infrastructure-as-
a-service offerings. In IEEE International Conference on Cloud Computing (CLOUD),
pages 484–491, July 2011. doi:10.1109/CLOUD.2011.80.

[LTG+14] Lydia Leong, Douglas Toombs, Bob Gill, Gregor Petri, and Tiny Haynes.
Magic quadrant for cloud infrastructure as a service. Gartner, May 2014.
URL: http://www.gartner.com/technology/reprints.do?id=1-
1UKQQA6&ct=140528&st=sb.

http://dx.doi.org/10.1109/CLOUD.2011.43
http://dx.doi.org/10.1109/CloudCom.2010.69
http://dx.doi.org/10.1109/CLOUD.2012.98
http://dx.doi.org/10.1109/IISWC.2013.6704671
http://dx.doi.org/10.1109/IISWC.2013.6704671
http://wangmir.com/content/down/Katcher97-postmark-netapp-tr3022.pdf
http://wangmir.com/content/down/Katcher97-postmark-netapp-tr3022.pdf
http://dx.doi.org/10.1145/1807167.1807231
http://dx.doi.org/10.1109/UCC.2013.28
http://dx.doi.org/10.1145/1188455.1188677
http://www.gartner.com/newsroom/id/2575515
http://dx.doi.org/10.1109/CLOUD.2011.80
http://www.gartner.com/technology/reprints.do?id=1-1UKQQA6&ct=140528&st=sb
http://www.gartner.com/technology/reprints.do?id=1-1UKQQA6&ct=140528&st=sb

46 BIBLIOGRAPHY

[LW09] Huan Liu and Sewook Wee. Web server farm in the cloud: Performance evaluation
and dynamic architecture. In Cloud Computing, volume 5931 of Lecture Notes in Com-
puter Science, pages 369–380. Springer, 2009. doi:10.1007/978-3-642-10665-
1_34.

[LYKZ10a] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. Cloudcmp: Comparing
public cloud providers. In Proceedings of the 10th ACM SIGCOMM Conference on Inter-
net Measurement (IMC ’10), pages 1–14, 2010. doi:10.1145/1879141.1879143.

[LYKZ10b] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. Cloudcmp: Shopping
for a cloud made easy. In Proceedings of the 2nd USENIX Conference on Hot Topics
in Cloud Computing (HotCloud’10), 2010. URL: http://research.microsoft.
com/apps/pubs/default.aspx?id=136451.

[LZK+11] Ang Li, Xuanran Zong, Srikanth Kandula, Xiaowei Yang, and Ming Zhang. Cloud-
prophet: Towards application performance prediction in cloud. In Proceedings of
the ACM SIGCOMM 2011 Conference (SIGCOMM ’11), pages 426–427, 2011. doi:
10.1145/2018436.2018502.

[Mah13] Zaigham Mahmood. Cloud Computing: Methods and Practical Approaches. Computer
Communications and Networks. Springer, 2013.

[MC13] Lorraine Morgan and Kieran Conboy. Key factors impacting cloud computing adop-
tion. Computer, 46(10):97–99, October 2013. doi:10.1109/MC.2013.362.

[MG11] Peter Mell and Timothy Grance. The nist definition of cloud computing. Technical
Report 800-145, National Institute of Standards and Technology (NIST), September
2011. URL: http://csrc.nist.gov/publications/nistpubs/800-145/
SP800-145.pdf.

[MH12] Ming Mao and Marty Humphrey. A performance study on the vm startup time in
the cloud. In 5th IEEE International Conference on Cloud Computing (CLOUD), pages
423–430, Juni 2012. doi:10.1109/CLOUD.2012.103.

[MJ98] David Mosberger and Tai Jin. Httperf - a tool for measuring web server per-
formance. ACM SIGMETRICS Performance Evaluation Review, 26(3):31–37, 1998.
doi:10.1145/306225.306235.

[MLT98] Philips J. Mucci, Kevin London, and John Thurman. The cachebench report. CEWES
MSRC/PET, 19(TR/98-25), March 1998. URL: http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.25.6186&rep=rep1&type=pdf.

[MVML13] Rafael Moreno-Vozmediano, Rubén S. Montero, and Ignacio M. Llorente. Key chal-
lenges in cloud computing: Enabling the future internet of services. IEEE Internet
Computing, 17(4):18–25, July 2013. doi:10.1109/MIC.2012.69.

[Nad14] Satya Nadella. Mobile first, cloud first [online]. March 2014. Press Briefing of
Microsoft CEO. URL: http://www.microsoft.com/en-us/news/speeches/
2014/03-27nadella.aspx [cited 2014-07-07].

[NB09] Jeffrey Napper and Paolo Bientinesi. Can cloud computing reach the top500? In
Proceedings of the Combined Workshops on UnConventional High Performance Computing
Workshop Plus Memory Access Workshop (UCHPC-MAW ’09), pages 17–20, 2009. doi:
10.1145/1531666.1531671.

http://dx.doi.org/10.1007/978-3-642-10665-1_34
http://dx.doi.org/10.1007/978-3-642-10665-1_34
http://dx.doi.org/10.1145/1879141.1879143
http://research.microsoft.com/apps/pubs/default.aspx?id=136451
http://research.microsoft.com/apps/pubs/default.aspx?id=136451
http://dx.doi.org/10.1145/2018436.2018502
http://dx.doi.org/10.1145/2018436.2018502
http://dx.doi.org/10.1109/MC.2013.362
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://dx.doi.org/10.1109/CLOUD.2012.103
http://dx.doi.org/10.1145/306225.306235
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.6186&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.6186&rep=rep1&type=pdf
http://dx.doi.org/10.1109/MIC.2012.69
http://www.microsoft.com/en-us/news/speeches/2014/03-27nadella.aspx
http://www.microsoft.com/en-us/news/speeches/2014/03-27nadella.aspx
http://dx.doi.org/10.1145/1531666.1531671
http://dx.doi.org/10.1145/1531666.1531671

BIBLIOGRAPHY 47

[OIY+10] Simon Ostermann, Alexandria Iosup, Nezih Yigitbasi, Radu Prodan, Thomas
Fahringer, and Dick Epema. A performance analysis of ec2 cloud computing ser-
vices for scientific computing. In Cloud Computing, volume 34 of Lecture Notes of the
Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering,
pages 115–131. Springer, 2010. doi:10.1007/978-3-642-12636-9_9.

[OZN+12] Zhonghong Ou, Hao Zhuang, Jukka K. Nurminen, Antti Ylä-Jääski, and Pan
Hui. Exploiting hardware heterogeneity within the same instance type of amazon
ec2. In Proceedings of the 4th USENIX Conference on Hot Topics in Cloud Computing
(HotCloud’12), 2012. URL: http://dl.acm.org/citation.cfm?id=2342763.
2342767.

[RBD+12] Eduardo Roloff, Francis Birck, Matthias Diener, Alexandre Carissimi, and Philippe
O. A. Navaux. Evaluating high performance computing on the windows azure plat-
form. In 5th IEEE International Conference on Cloud Computing (CLOUD), pages 803–
810, June 2012. doi:10.1109/CLOUD.2012.47.

[RCL09] Bhaskar Prasad Rimal, Eunmi Choi, and Ian Lumb. A taxonomy and survey of
cloud computing systems. In 5th International Joint Conference on INC, IMS and IDC
(NCM ’09), pages 44–51, August 2009. doi:10.1109/NCM.2009.218.

[RMP10] Pierre Riteau, Christine Morin, and Thierry Priol. Shrinker: Efficient wide-area live
virtual machine migration using distributed content-based addressing. Technical
Report RR-7198, INRIA, February 2010. URL: http://hal.inria.fr/inria-
00454727.

[SASA+11] Khaled Salah, M. Al-Saba, M. Akhdhor, O. Shaaban, and M.I. Buhari. Performance
evaluation of popular cloud iaas providers. In 6th International Conference on Internet
Technology and Secured Transactions (ICITST), pages 345–349, December 2011.

[SBC+13] James Staten, Dave Bartoletti, Andras Cser, John Kindervag, Rachel A. Dines, Lau-
ren E. Nelson, Liz Herbert, Christopher Voce, and Heather Belanger. Predictions for
2014: Cloud computing. Forrester Research, Inc., 12 2013.

[SBDR05] Joel Sommers, Paul Barford, Nick Duffield, and Amos Ron. Improving accuracy in
end-to-end packet loss measurement. In Proceedings of the 2005 Conference on Ap-
plications, Technologies, Architectures, and Protocols for Computer Communications (SIG-
COMM ’05), pages 157–168, 2005. doi:10.1145/1080091.1080111.

[SBV+09] Alexander S. Szalay, Gordon Bell, Jan Vandenberg, Alainna Wonders, Randal Burns,
Dan Fay, Jim Heasley, Tony Hey, Maria Nieto-SantiSteban, Ani Thakar, Catharine
van Ingen, and Richard Wilton. Graywulf: Scalable clustered architecture for data
intensive computing. In 42nd Hawaii International Conference on System Sciences
(HICSS ’09), pages 1–10, January 2009. doi:10.1109/HICSS.2009.234.

[SDQR10] Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. Runtime measurements
in the cloud: Observing, analyzing, and reducing variance. Proceedings of the VLDB
Endowment, 3(1):460–471, September 2010. doi:10.14778/1920841.1920902.

[SHG+13] M. Silva, M.R. Hines, D. Gallo, Qi Liu, Kyung Dong Ryu, and D. Da Silva. Cloud-
bench: Experiment automation for cloud environments. In IEEE International Confer-
ence on Cloud Engineering (IC2E), pages 302–311, March 2013. doi:10.1109/IC2E.
2013.33.

http://dx.doi.org/10.1007/978-3-642-12636-9_9
http://dl.acm.org/citation.cfm?id=2342763.2342767
http://dl.acm.org/citation.cfm?id=2342763.2342767
http://dx.doi.org/10.1109/CLOUD.2012.47
http://dx.doi.org/10.1109/NCM.2009.218
http://hal.inria.fr/inria-00454727
http://hal.inria.fr/inria-00454727
http://dx.doi.org/10.1145/1080091.1080111
http://dx.doi.org/10.1109/HICSS.2009.234
http://dx.doi.org/10.14778/1920841.1920902
http://dx.doi.org/10.1109/IC2E.2013.33
http://dx.doi.org/10.1109/IC2E.2013.33

48 BIBLIOGRAPHY

[ŠS11] Vladimir Šor and Satish Narayana Srirama. A statistical approach for identifying
memory leaks in cloud applications. In First International Conference on Cloud Com-
puting and Services Science (CLOSER 2011), pages 623–628, 2011.

[SSGW11] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. Cloudscale:
Elastic resource scaling for multi-tenant cloud systems. In Proceedings of the 2nd
ACM Symposium on Cloud Computing (SOCC ’11), pages 5:1–5:14, 2011. doi:10.
1145/2038916.2038921.

[SSS+08] Will Sobel, Shanti Subramanyam, Akara Sucharitakul, Jimmy Nguyen, Hubert
Wong, Arthur Klepchukov, Sheetal Patil, Armando Fox, and David Patterson.
Cloudstone: Multi-platform, multi-language benchmark and measurement tools
for web 2.0, 2008. URL: http://cyberaide.googlecode.com/svn/trunk/
misc/cloud-papers/cca08/33.pdf.

[Ste46] Stanley Smith Stevens. On the theory of scales of measurement. Science,
103(2684):677–680, June 1946.

[TMV+11] Lingjia Tang, Jason Mars, Neil Vachharajani, Robert Hundt, and Mary Lou Soffa.
The impact of memory subsystem resource sharing on datacenter applications. In
38th Annual International Symposium on Computer Architecture (ISCA), pages 283–294,
June 2011.

[UN10] Yohai Ueda and Toshio Nakatani. Performance variations of two open-source cloud
platforms. In IEEE International Symposium on Workload Characterization (IISWC),
pages 1–10, December 2010. doi:10.1109/IISWC.2010.5650280.

[VRMCL08] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break in
the clouds: Towards a cloud definition. ACM SIGCOMM Computer Communication
Review, 39(1):50–55, January 2008. doi:10.1145/1496091.1496100.

[Wal08] Edward Walker. Benchmarking amazon ec2 for high-performance scientific com-
puting. Usenix Login, 33(5):18–23, October 2008.

[WJC+10] Hongyi Wang, Qingfeng Jing, Rishan Chen, Bingsheng He, Zhengping Qian, and
Lidong Zhou. Distributed systems meet economics: Pricing in the cloud. In Pro-
ceedings of the 2nd USENIX conference on Hot topics in cloud computing (HotCloud’10),
2010.

[WN10] Guohui Wang and T. S. Eugene Ng. The impact of virtualization on network perfor-
mance of amazon ec2 data center. In Proceedings IEEE INFOCOM, pages 1–9, March
2010. doi:10.1109/INFCOM.2010.5461931.

[WOT+95] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. The splash-2 programs: Characterization and methodological con-
siderations. In Proceedings of the 22nd Annual International Symposium on Computer
Architecture (ISCA ’95), pages 24–36, 1995. doi:10.1145/223982.223990.

[YBS08] Lamia Youseff, Maria Butrico, and Dilma Da Silva. Toward a unified ontology of
cloud computing. In Grid Computing Environments Workshop (GCE ’08), pages 1–10,
November 2008. doi:10.1109/GCE.2008.4738443.

[YIEO09] Nezih Yigitbasi, Alexandru Iosup, Dick Epema, and Simon Ostermann. C-meter: A
framework for performance analysis of computing clouds. In Proceedings of the 2009
9th IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID
’09), pages 472–477, 2009. doi:10.1109/CCGRID.2009.40.

http://dx.doi.org/10.1145/2038916.2038921
http://dx.doi.org/10.1145/2038916.2038921
http://cyberaide.googlecode.com/svn/trunk/misc/cloud-papers/cca08/33.pdf
http://cyberaide.googlecode.com/svn/trunk/misc/cloud-papers/cca08/33.pdf
http://dx.doi.org/10.1109/IISWC.2010.5650280
http://dx.doi.org/10.1145/1496091.1496100
http://dx.doi.org/10.1109/INFCOM.2010.5461931
http://dx.doi.org/10.1145/223982.223990
http://dx.doi.org/10.1109/GCE.2008.4738443
http://dx.doi.org/10.1109/CCGRID.2009.40

BIBLIOGRAPHY 49

[ZCB10] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art and
research challenges. Journal of internet services and applications, 1(1):7–18, 2010. doi:
10.1007/s13174-010-0007-6.

[Zha01] Xiaolan Zhang. Application-specific benchmarking. PhD thesis, Harvard Univer-
sity Cambridge, Massachusetts, 2001. URL: http://www.eecs.harvard.edu/
~syrah/application-spec-benchmarking/publications/thesis.pdf.

[ZL11] Gong Zhang and Ling Liu. Why do migrations fail and what can we do about it?
In Proceedings of the 25th International Conference on Large Installation System Adminis-
tration (LISA’11), pages 25–25, 2011. URL: https://www.usenix.org/legacy/
events/lisa11/tech/full_papers/Zhang.pdf.

http://dx.doi.org/10.1007/s13174-010-0007-6
http://dx.doi.org/10.1007/s13174-010-0007-6
http://www.eecs.harvard.edu/~syrah/application-spec-benchmarking/publications/thesis.pdf
http://www.eecs.harvard.edu/~syrah/application-spec-benchmarking/publications/thesis.pdf
https://www.usenix.org/legacy/events/lisa11/tech/full_papers/Zhang.pdf
https://www.usenix.org/legacy/events/lisa11/tech/full_papers/Zhang.pdf

	Introduction
	Goals and Contributions
	Thesis Outline

	Background
	Definition of Cloud Computing
	Taxonomy of Cloud Services
	IaaS Services
	PaaS Services
	SaaS Services

	Taxonomy of IaaS Cloud Benchmarks
	Micro-Benchmarks
	Application Benchmarks
	State of the Art Cloud Benchmarks

	Tools for Cloud Deployment
	Chef
	Vagrant

	Cloud WorkBench
	Overall System Architecture
	Anatomy of a Benchmark
	Benchmark Execution
	Benchmark State Model
	Types of Benchmark Results
	Implementation and Deployment
	Web Application
	Provisioning Service
	Deployment in the Cloud

	Case Study
	Method
	Results and Discussion
	Threats to Validity

	Related Work
	Comparison with Cloud WorkBench

	Conclusion
	Endnotes
	Abbreviations

