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Joel Scheuner, Genc Mazlami, Dominik Schöni, Sebastian Stephan, Alessandro De Carli,
Thomas Bocek, and Burkhard Stiller

Communication Systems Group CSG, Department of Informatics IfI, University of Zurich
CH-8050 Zurich, Switzerland

Email: {firstname}.{lastname}@uzh.ch

Abstract—WiFi-enabled devices broadcast a vast amount of
data without being associated to any access points. To study
and analyze this data, a generic passive WiFi tracking system
called Probr was developed. Probr manages various types of
WiFi capturing devices, collects captured WiFi traces, processes
collected WiFi traces, and visualizes WiFi activities via its Web
interface. Probr supports several on-line analysis use cases and is
extensible with respect to custom storage solutions to fit further
use cases. Thus, Probr is the first system of that kind known,
enabling full device administration and provided completely as
Open Source.

A case study conducted demonstrates the capabilities of Probr
for use cases such as room utilization estimation, indoor device lo-
calization, tracking a person’s presence between multiple Probr-
equipped locations, and analysis of device vendor preferences.

I. INTRODUCTION

Industry, as indicated by [19], and research [29], [18], [20],
[34], [17] have shown interest in collecting and analyzing WiFi
traces. Such traces are generated by WiFi-enabled devices even
when they are not associated with an Access Point (AP). This
allows a device to be tracked in a non-intrusive way without
installing additional software. The large amount of trackable
devices within our daily environment holds a larger potential
in revealing interesting patterns about their owners as many
people utilize smartphones all day. However, collecting and
analyzing such large amounts of data is difficult. Additionally,
with the advent of affordable mini computers, such as the
Raspberry Pi, potentially many WiFi capturing devices are
available nowadays but must be managed by a capable system.

This paper introduces Probr [1], a generic, extensible, and
open source system for passive WiFi tracking that supports
several on-line analysis use cases. Probr separates device
administration and WiFi data analysis into two subsystems
called Probr-Core and Probr-Analysis. Probr-Core supports
the configuration of WiFi interfaces, the capturing of WiFi
traces, and the collection of results on groups of distributed
devices through a graphical Web interface. Probr-Analysis
processes and visualizes WiFi traces that are collected with
Probr-Core.

While in principle two alternative methods to associate with
an AP can be identified, especially AP-initiated WiFi beacons
and client device-initiated probe requests, Probr exploits the
latter. In the first method, APs periodically announce (e.g.,
every 100 ms) their presence by broadcasting beacon manage-

ment frames, which contain network-information such as the
supported data rates and the SSID (Service Set Identifier).
To detect APs, client devices listen for beacons and reply
with WiFi association frames to initiate a connection. Within
the second method, client devices actively discover APs by
broadcasting WiFi probe requests on potentially multiple chan-
nels. Probe requests contain information about the client (e.g.,
Media Access Control (MAC) address) and the preferred AP
(e.g., SSID) with which the client device wishes to associate.
Although this work focuses on probe requests, Probr is also
able to support capturing any publicly receivable WiFi activ-
ities. Instead of dealing with highly sensitive encrypted WiFi
packets, the publicly broadcasted probe requests turned out to
be sufficient to address the questions posed in the conducted
case study. This case study demonstrates the capabilities of
Probr and reveals interesting patterns with the following use
cases:

U1 Room utilization: How many people are in a room at
any given time?
U2 Device localization: Where are devices located in a
room?
U3 Person tracking: Is it possible to reproduce the daily
routine of a person?
U4 Device statistics: Can the data expose device vendor
preferences for different communities?

This paper is structured as follows: Section II discusses
related work. Section III is dedicated to the architecture and
design of the Probr system and its components. Section IV
presents a case study where Probr analyzes patterns during
a meeting. Finally, Section V draws conclusions and depicts
future steps of relevance.

II. RELATED WORK

Traces of WiFi activities have been captured and analyzed
in research for many years. Many rely on active participation
of the device being tracked or on traces being taken from
APs. A first passive WiFi tracking approach was presented in
[26], which allowed to capture WiFi packets from any WiFi-
enabled device. This idea was pursued by further research
and also lead to the development of tooling for WiFi tracking
studies. Collecting and analyzing WiFi traffic raises questions
regarding privacy of potential sensitive data. Therefore, related
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work about privacy in the field of WiFi tracking is discussed
at the end of this section.

1) Active WiFi Tracking: Active or non-passive WiFi track-
ing relies on active device participation by installing additional
software or configuring a device for a specific AP. In 2005,
[25] proposed a device localization system called Place Lab
using different kinds of radio beacons, including beacons from
WiFi APs, to overcome limitations of existing systems. In
particular, the ubiquity of WiFi systems allows for maximized
coverage and easy deployment while simultaneously achieving
fairly accurate localization results around 20 to 40 meters
in urban areas. Similarly, also relying on a custom appli-
cation installed on the device being localized, [20] reported
to have achieved very accurate (i.e., ≈ 3 meters) real-time
localization results in their indoor experiment by using a path
loss based estimation model. Instead of relying on client-side
computation, [33] analyzed WiFi traces from APs to track
any object equipped with a WiFi tag. They reported results of
similar accuracy (i.e., ≈ 4 meters indoor) compared to [20].
WiFi traces from APs were analyzed in [24] but their goal
was to construct a mobility model focusing on movements
of devices among popular regions. [32] visualized campus-
wide WiFi activity from AP traces in real time. Also based on
WiFi traces from APs, [30] performed indoor density and flow
estimation with the goal to support indoor facility planning in
large buildings.

2) Passive WiFi Tracking: In passive WiFi tracking, a
capturing device senses and tracks any WiFi traffic within
its range. [26] reported to be ”the first study of using WiFi
transmissions for passive tracking of WiFi clients”. They pre-
sented a system comprising of common, off-the-shelf WiFi AP
hardware that captures probe requests and implements several
techniques to prompt devices for additional transmissions in
order to obtain more valuable data. The collected data is then
used to estimate the trajectory (i.e., spatio-temporal path) of
monitored devices. The authors propose a solution based on
the Viterbi algorithm and Hidden Markov Model to overcome
limitations of simple interpolation based approaches. Although
[34] have employed passive WiFi traffic capturing before for
tracing movements of mobile users, their scenario was limited
to periodic MAC address scans of APs for the purpose of
device localization and thus did not include tracking unmod-
ified devices. In a similar way, [21] present a crowdsensing
approach by leveraging commodity smartphones and exploit-
ing the natural mobility of people to gather information (e.g.,
bandwidth distribution) about the existing AP infrastructure in
a specific area.

In the following, passive WiFi tracking approaches are dis-
cussed that aim towards tracking unmodified mobile devices.
[23] performed real-time pedestrian flow analyses in indoor
and outdoor environments by collecting and investigating
probe requests. [31] focused on classifying human presence
into different activity patterns (e.g., engaged or outside). [16]
showed that probe request traces can reveal insightful infor-
mation about the social structure and socioeconomic status of
device owners. On large-scale datasets, graph-based models

were used to derive relationship graphs and were combined
with further features such as the owner language guessed
from known service set identifiers (SSIDs) or the device
vendor inferred from commonly known MAC address prefixes.
[17] demonstrated a crowdsensing system that captures WiFi
packets in the air using the monitor mode of mobile devices.
They concluded that crowdsensing can be used for efficient
mobility estimation (i.e., coarse-grained device localization)
but it is also subject to privacy invasion because surrounding
users expose their location without granting any permission.

3) WiFi Tracking Tools: Several tools for passive WiFi
tracking have been proposed in academia and industry. [35]
presented a framework called Snoopy, developed by the Sense-
Post [2] company, that has been extensively tested and was
even deployed in extreme conditions such as aerial surveillance
by placing capturing devices onto drones. [31] presented a
WiFi monitoring and data aggregation system called Mo-Fi
that was optimized with WiFi channel detection and selection
algorithms, and client-side data filtering and compression.
In addition to probe messages, Mo-Fi also captures other
WiFi traffic to perform frequency analysis. [28] designed a
cheap, distributed, and large-scale WiFi tracking system called
CreepyDOL that was used to collect a comprehensive amount
of WiFi traces (hundreds of gigabytes). In industry, there exist
several commercial WiFi tracking solutions. [19] compiled a
list of 15 major vendors of WiFi tracking systems including
RetailNext [3] which was also mentioned by [35]. In addition,
Wilkinson referred to numerous offerings in the military space
(e.g., Netline [4], Verint [5]).

Table I compares Probr with existing WiFi tracking tools
using the following 5 dimensions. Device administration sup-
ports custom commands via its interactive terminal which
makes Probr flexible to capture other signal types beyond WiFi
and very suitable to perform ad-hoc experiments and scale
them to larger studies. The capturing client is designed to run
on minimal infrastructure, such as BusyBox [6], aiming to
support a wide range of capturing devices without the need to
setup additional runtime environments. The data presentation
of Probr excels with a real-time Web interface that allows
for flexible packet querying which includes user-definable
tags in order to logically structure individual experiments.
All supported use cases of Probr are available on-line, which
means that analyses do not need to be triggered manually
(i.e., off-line) but instead are performed incrementally and the
results are presented timely to the user. The Probr system is
fully open source and available on Github [1].

4) WiFi Tracking and Privacy: A set of attacks aiming
towards identifying the association between a person and
its WiFi device were presented in [18]. He concluded that
”any individual equipped with a WiFi enabled device, such
as a smartphone, can be easily tracked in its daily life”. In
addition to summarizing different types of privacy violating
WiFi attacks, potential countermeasures against these threats
were reported in [27]. An analysis how companies currently
handle privacy policies for WiFi tracking systems was con-
ducted in [19]. Additionally, they revealed weaknesses in hash-



TABLE I: Comparison of WiFi Tracking Tools

Snoopy [35] Mo-Fi [31] CreepyDOL [28] Probr
Device
Administration

No No No Yes

Capturing Client Python Python Ruby Portable Shell
Data
Presentation

Maltego (Data Visualization and
Graphing Engine)

Web Interface with Visualizations Unity (3D Game Engine) Web Interface with Visualizations

Supported
Use Cases

Room Utilization, Device
Localization, Device Statistics,
Person Tracking (all off-line)

Human Presence Device Localization,
Web Traffic Analysis

Room Utilization, Device
Localization, Device Statistics,
Person Tracking (all on-line)

Open Source Mostly [7] No Partially [8] Yes [9]

based MAC address anonymization, demonstrated brute-force
attacks against MAC address hashes, and briefly discussed a
more secure implementation for anonymizing MAC addresses.
However, MAC address pseudonyms are insufficient to prevent
WiFi tracking because the majority of users (65%) can be
profiled with high accuracy (90%) based on implicit identifiers
(e.g., SSID probes, MAC protocol fields, or timing and sizes
of Web transfers) as studied in [29].

III. THE Probr SYSTEM

The Probr system is divided into two subsystems: Probr-
Core and Probr-Analysis. Probr-Core is a generic remote
device administration system to manage WiFi capturing de-
vices, while Probr-Analysis is an analytical application. Fig. 1
illustrates the interaction between the two subsystems. While
Probr-Core writes the collected packets from the capturing
devices to the storage, Probr-Analysis accesses this storage to
retrieve the raw packet data for analyzing or showing captured
data in real-time.

A. Probr-Core

Probr-Core consists of a device management Web interface,
a back-end service that provides a RESTful API for communi-
cating with capturing devices, and a worker service that stores
the data. Probr-Core users can manage (i.e., setup, monitor,
remove) devices and execute arbitrary remote commands via
the Web interface. The wizard-guided setup to add a new
device can be completed by executing a shell command on
the device to register. Subsequently, further administration
tasks can be accomplished solely via the Web interface. The
remote command execution is pull-based to support distributed
capturing across various networking topologies (e.g., devices
behind NAT). Furthermore, all device-server communication
is secured via HTTPS and per device API key authenti-
cation. Fig. 2a shows the view of a managed device with
its interactive terminal. Pre-configured command templates
for common actions, such as setting a device into monitor
mode or starting WiFi capturing, are supported as well. Each
managed device continuously runs a shell script in an infinite
loop that periodically announces status updates (i.e., CPU and
memory usage) to the back-end server and checks for pending
remote commands to execute. The shell code is designed
to be fault-tolerant regarding erroneous remote commands
and the script will automatically recover after rebooting a

managed device. Furthermore, the device script is portable
across various devices and *NIX flavored operating systems.

The back-end server provides RESTful APIs for the Web
interface and capturing devices. It allows capturing devices
to announce their status (including CPU and memory usage),
retrieve and update remote commands, and submit captured
WiFi traces via a *.pcap file. The task of transforming pcap
files into a packet representation for a given storage solution
is abstracted by the handler interface. New handler implemen-
tations for alternative storage solutions can be registered in
the application configuration in order to attribute for different
needs of various use cases (e.g., InfluxDB [10] for time series
analysis).

B. Probr-Analysis

The Probr-Analysis subsystem consists of a visualization
Web interface for the user, a back-end providing a RESTful
API for the Web interface, and a set of decoupled workers that
process data-intensive workloads asynchronously. The user can
browse and query collected packets, view utilization graphs
(Fig. 2b top), explore the location heatmap (Fig. 6), view
vendor device statistics (Fig. 8), and track persons based on
their MAC address (Fig. 2b bottom). In the following, the
foundations of the session-based utilization model, the signal
strength-based localization process, and MAC address-based
device identification will be presented.

1) Sessions: The notion of sessions defines device pres-
ence within a monitored area in a superior way than simple
MAC address counting. Sessions are much less susceptible to
overestimate device presence compared to simply counting the
number of distinct source MAC addresses from observed WiFi
packets. A session is defined as the time interval wherein a
device with a certain MAC address was present. It is stored as
a session entity that contains the MAC address, a start and
end timestamp of the interval, the number of packets that
contributed to the interval, the duration of the interval, and
a list of Probr-defined tags.

A packet represents a single WiFi probe request. It is
identified by a UUID and contains the source MAC address,
destination MAC address, a timestamp, an SSID, the signal
strength, a list of Probr-defined tags, and optionally the lo-
cation (i.e., latitude and longitude) of the capturing device.
All these attributes are measured and set in the Probr-Core
subsystem and then stored in the connecting database which
is accessed by Probr-Analysis.
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Fig. 3: Example of Session Definition

A session covers multiple packets that originate from the
same MAC address and have an inter-packet time of less than
5 minutes (other session times can be configured as well).
Fig. 3 illustrates the construction of a session: The packets
p1, p2 and p3 belong to the same session because they are
less than 5 minutes apart from each other. The next packet
p4, although from the same MAC address, does not belong to
the same session anymore because the time between p3 and
p4 is too long. Packet p4 also does not form a session together
with p5 because the timespan of this candidate session is below
the specified threshold of 1 minute. This minimum threshold
for session duration prevents that devices just passing by a
capturing device are considered being present at this location.
However, p6 and p7 exceed this timespan threshold, are
more than 5 minutes apart from p3, and are thus considered
as a separate session. Counting the number of overlapping
concurrent sessions at all times, as indicated in the lower part
of Fig. 3, directly translates to the number of seen devices at
a time in the monitored location.

2) Localization Process: Probr-Analysis leverages the
MapReduce programming model and asynchronous worker
model to analyze captured WiFi packets and derive location
estimates for each sender device identified. The Map function
emits the location of the capturing device together with
the received signal strength indicator (RSSI) for each WiFi
packet that satisfies a specific noise reduction threshold (e.g.,
RSSI > −60). The emitted value is identified by a composite
key consisting of the packet’s MAC address and a timestamp
rounded off to the nearest minute. Subsequently, the Reduce
function pairs each location with its RSSI value for the same
MAC address per minute. Multiple observations for the same
location are combined by averaging their RSSI values. The re-
sulting list of location-RSSI pairs per MAC address per minute
is then persisted into an intermediate MongoDB collection. For
each of these entries, a worker job incrementally computes a
location estimate using multilateration.

The proportional growth multilateration algorithm takes the
RSSI as an indicator of the physical distance between the
sender device and the capturing device to obtain a location
estimate for the sender device. The formula expressing the
general relationship between RSSI and physical distance (1),
experimentally derived in [36], was adjusted slightly to the

incremental nature of Probr-Analysis (2) by introducing the
additional multiplier m. As starting with m=1 might be insuf-
ficient to achieve at least three intersecting circles (Fig. 4a),
the algorithm exponentially increases m for all RSSI values
(resulting in larger circles) until the three smallest circles
intersect (Fig. 4b). Notice that a larger circle represents weaker
signal strength, indicating that the sender device (depicted by
the diamond ♦) is located further away from a capturing device
(green bullet •). The centroid (cross ×) of the intersection
area (hatched area) constitutes the final location estimate. The
deviation between the estimated (×) and the actual (♦) sender
location is caused by interference factors such as obstacles or
reflecting walls that influence the measured RSSI.

RSSI = −15.08 ∗ log(dist)− 38.45 (1)

dist(RSSI,m) = 10

(
RSSI∗m+38.45

−15.08

)
(2)

3) Device Identification: MAC addresses are used to iden-
tify individual devices and their vendor. The MAC address
of each device is specified by the vendor, which in turn
is required to register at the IEEE Standards Registration
Authority [11]. A MAC address is composed of a 3 Byte
Organizationally Unique Identifier (OUI) which identifies the
vendor and another 3 Byte long Network Interface Controller
(NIC) specific identifier. This enables Probr-Analysis to query
the vendor for each of the captured devices found in the packet
data.

Device vendors have started to introduce MAC address
randomization to protect the privacy of their users. Such a
device uses a random MAC address when scanning for APs.
Thus, for each scan, Probr sees a new device. Therefore,
Probr automatically detects and ignores such device candidates
caused by MAC address randomization. This is achieved by
inspecting a flag, specified by IEEE 802 [15], in the MAC
address that indicates whether an address is administered
universally or locally (i.e., randomized). While vendors have
to follow this standard, additional tools such as Pry-Fi [12] can
be used to generate true random MAC addresses and spam the
Probr system. Furthermore, Pry-Fi also can change the MAC
address for each new WiFi connection, offering a good privacy
protection.



(a) Initial Intersections (b) Final Trilateration

Fig. 4: Example of Multilateration

IV. CASE STUDY

For the case study, a 2 days experiment was conducted in
a meeting room (≈ 35 m2) at UZH during a scientific project
meeting attended by 20 to 25 people. The capturing devices
were ODROID-C1 [13] single-board computers equipped with
the standard ODROID WiFi Module 4 [14]. Probr was used to
setup and configure 6 capturing devices placed in the room’s
corners and monitor the room during the experiment. In total,
Probr captured over 200 000 probe requests originating from
1 705 unique MAC addresses out of which 371 could be
attributed to MAC randomization. This case study answers the
questions with respect to the use cases U1 (room utilization),
U2 (device localization), U3 (person tracking), and U4 (device
statistics).

A. Room Utilization

Fig. 5 illustrates the Probr utilization estimates compared
to the actual number of people present in the room that were
manually recorded every 15 minutes during the experiment.
The Probr estimates are generally higher (peak at 30 people)
than the actual utilization (with a peak at 22 people) due to the
fact that Probr reports the number of probing devices which
often exceeds the actual number of people. One can explain
this divergence with a high percentage of people having more
than one WiFi-enabled device in the room (e.g., smartphone
and laptop). Outside of meeting hours (e.g., between 18.00
hours and 9.00 hours), Probr overestimated the actual zero
utilization by up to 3 people. This noise is caused by devices
that are not tied to any people carrying them such as routers or
network printers. On the contrary, a cause for under-estimated
utilization is the sleep mode of devices that suppresses WiFi
activity. However, Probr correctly reflects major changes in
room utilization as happened at the end of the first meeting
day (18.00 hours) or at lunchtime (12.00 hours) on the second
day. Notice the smaller utilization decrease than actual in the
latter case due to laptops being left in the room over lunchtime.
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Fig. 5: Room Utilization

B. Indoor Localization

Fig. 6 shows the changes in the heatmaps for the first day
of the case study from 11.30 hours to 14.00 hours. These
heatmaps give an indication about where the majority of
people were located at that corresponding time within the L-
shaped meeting room. The participants of the meeting were
located mostly in the upper part of the room, while the lower
part was used for coffee breaks which corresponds to the
Probr-reported heatmaps.

Accurate localization through multilateration of WiFi sig-
nals is difficult due to interference, effects of noise, obstacles,
and reflections [20], [33]. Probr shows that WiFi-based multi-
lateration as a localization tool works well enough to be able
to display the general distribution of people in a room or area.
Therefore, a heatmap representation was chosen in order to
attribute for slight inaccuracies (e.g., some device locations
were reported slightly outside the room as illustrated by the
second heatmap in Fig 6). A limitation of the study setup is
that exact position recording of each device was not feasible
and thus quantitative analysis of the localization accuracy will
be part of future work.
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Fig. 6: Sample Localization Results

C. Person Tracking

Probr allows to monitor specific MAC addresses which
can be used to identify behavioral patterns of specific people
across multiple Probr-equipped locations. To demonstrate this
ability, a mobile phone of a Probr team member was selected
and his home location and workplace was equipped with
capturing devices. Fig. 7 shows a day of monitored WiFi
data as produced by Probr-Analysis for the person under
surveillance. The green boxes together with the above-noted
annotations were added to indicate his real locations. The
example shows that the person under surveillance started the
day approximately at 6.30 hours. At midday, he left home and
traveled to the university. After the arrival at approximately
13.30 hours, he stayed until 19.00 hours and arrived back
home shortly afterwards. During nighttime, no activity has
been registered. This matches with our subject’s behavior of
leaving his phone in airplane mode while asleep.

D. Device Statistics

To illustrate the differences in communities, we present
the device vendor statistics for two data sets: The WiFi data
captured during the 2 day use case introduced before (Fig. 8a)
and a 30 GB data set of continuous operation over 4 months
including almost 30 million probe requests that were captured
within a student lab at the IfI of the UZH (Fig. 8b).

The comparison of both distributions exhibits very clear
differences in vendor preferences of the spaces and com-
munities monitored. While Fig. 8b illustrates data from a
wider and more heterogeneous community (including students,
employees, and professors), the case study community con-
sisted mainly of senior researchers and was hence much more
homogeneous (cf. Fig. 8a). This leads to clear differences in
vendor preferences for the two groups: The case study group
shows a lower dominance of Apple devices than the general
group and a higher concentration of other vendors such as
Motorola and Samsung.

V. SUMMARY, CONCLUSIONS, AND FUTURE WORK

This paper introduced the generic, real-time, and passive
WiFi tracking system Probr, which was designed with the
two subsystems Probr-Core and Probr-Analysis. To our best
knowledge, Probr is the first passive WiFi tracking system that
supports real-time use cases, full device administration, and
that is provided completely as Open Source. It has been shown
how existing localization techniques were adapted to work
with incremental MapReduce resulting in the proportional
growth multilateration algorithm. Additionally, the case study
demonstrated that Probr is able to display relevant information
for several use cases including:

U1 Room utilization: Section IV-A and Fig. 5
U2 Device localization: Section IV-B and Fig. 6
U3 Person tracking: Section IV-C and Fig. 7
U4 Device statistics: Section IV-D and Fig. 8

Probr was able to estimate a room’s utilization tolerating slight
overestimation U1, present a room’s heatmap indicating the
device density distribution U2, track specific MAC addresses
across multiple Probr-equipped locations U3, and reveal dif-
ferences in vendor distributions between communities U4.

The generic operational capabilities might be limited due to
environmental interferences, noisy devices, and device-specific
probing behaviors. Therefore, parameter calibration, such as
the session timeout or the cut-off for weak signal strength,
can be required when deployed.

To prevent from being tracked, users of WiFi-enabled
devices have to turn off WiFi on their devices or setup
intrusive tools, such as Pry-Fi [12], for active protection. These
cumbersome countermeasures raise the need for alternative
protection mechanisms against passive WiFi tracking systems.
In the future, it is expected that device vendors continue their
efforts in developing preventive measures against privacy leaks
exploitable by passive WiFi tracking systems such as Probr.
Therefore, Probr will consider alternative identification meth-
ods such as device fingerprinting shown in [29] or device re-
identification based on probe request sequence numbers [22].
An additional challenge in capturing systems that rely on probe
requests is the variance of probing frequency and behaviour
among different devices [22]. To tackle these challenges,
future work will extend the scope of WiFi capturing, which is
currently limited to probe requests.
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