

Estimating Cloud Application Performance Based on Micro-Benchmark Profiling

Joel Scheuner, Philipp Leitner

Joel Scheuner

Scheuner@chalmers.se

O joe4dev

♥@joe4dev

Supported by WALLENBERG AI, AUTONOMOUS SYSTEMS AND SOFTWARE PROGRAM

Context: Public Infrastructure-as-a-Service Clouds

Infrastructure-as-a-Service (IaaS) Platform-as-a-Service (PaaS) Software-as-a-Service (SaaS)

Motivation: Capacity Planning in IaaS Clouds

What cloud provider should I choose?

24	Cloud Providers Comparison	The cloud computing providers comparison delivers detailed information about each cloud computing company. It breaks down each cloud computing pro HEP99, FISMA, and PCII. The cloud computing providers comparison gathers everything into a single resource.
181	oloda i tovidera obiriparison	HIPPA, FISMA, and PCI). The cloud computing providers comparison gathers everything into a single resource.

Providera	an all the second	5 M5	e Apps	dimension 🔥	CLOUDWARE	(Je onen	CloudSigma	VPS NET	1 anszon
* Cloud Features & N	Aanagement								
Hourly Pay-As-You- Go	√ ()	J	-	J	-	J	1	-	~
Cloud Management Software	proprietary	CloudStack	OnApp	proprietary	OnApp	proprietary	proprietary	OnApp	proprietary
One Account For All Locations	~	1	1	~	√ []	1	-	1	~
Web Interface	4	1	1	1	1	1	1	1	1
Mobile App	-	-	-	-	-	√ ①	-	√ (1)	1
Languages		English, Japanwaa, Chinasa (simplified), Rassian, French, Brazilian					English, Bulgarian, Dutch, French,		
Terminal access	English	Catalan, Korean,	English	English	English, Bulgarian	German	German, Italian, Polish, Portaguese,	English	English
API		Italian, Norwegian,					Russian, Spanish		
AINS-competible		Anabac; support in English							
API	1	1	1	-	-	1	🖌 🗉	1	-
OpenStack- compatible API	1	1	-	1	-	1	1	1	1
Command line	-	partial (I)	-	-	-	3	-	-	J
to be continue						-			•

https://www.cloudorado.com

Motivation: Capacity Planning in IaaS Clouds

What cloud service (i.e., instance type) should I choose?

Topic: Performance Benchmarking in the Cloud

"The instance type itself is a very major tunable parameter"

@brendangregg re:Invent'17 https://youtu.be/89fYOo1V2pA?t=5m4s

Background

Problem: Isolation, Reproducibility of Execution

Artificial

Resource-specific

Real-World

Resourceheterogeneous

Question

Research Questions

PRE – Performance Variability

Does the performance of equally configured cloud instances vary relevantly?

RQ1 – Estimation Accuracy

How accurate can a set of micro benchmarks estimate application performance?

RQ2 – Micro Benchmark Selection

Which subset of micro benchmarks estimates application performance most accurately?

Idea

Methodology

Benchmark Design

Micro Benchmarks	App Benchmarks
FIO	MDSim
StressNg – CPU	
StressNg – Network	
Sysbench – CPU	WPBench
Sysbench – File I/O	Webserver
Sysbench – Memory	Database
Sysbench – Threads	Perivion
Sysbench – Mutex	
iperf	
\/	

Micro Benchmarks

Broad resource coverage and specific resource testing

CPU

- sysbench/cpu-single-thread
- sysbench/cpu-multi-thread
- stressng/cpu-callfunc
- stressng/cpu-double
- stressng/cpu-euler
- stressng/cpu-ftt
- stressng/cpu-fibonacci
- stressng/cpu-int64
- stressng/cpu-loop
- stressng/cpu-matrixprod

Memory

- sysbench/memory-4k-block-size
- sysbench/memory-1m-block-size

I/O

- [file I/O] sysbench/fileio-1m-seq-write
- [file I/O] sysbench/fileio-4k-rand-read
- [disk I/O] fio/4k-seq-write
- [disk I/O] fio/8k-rand-read

Network

- iperf/single-thread-bandwidth
- iperf/multi-thread-bandwidth
- stressng/network-epoll
- stressng/network-icmp
- stressng/network-sockfd
- stressng/network-udp

Micro Benchmarks

Software (OS)

- sysbench/mutex
- sysbench/thread-lock-1
- sysbench/thread-lock-128

Application Benchmarks

Application Benchmarks

Molecular Dynamics Simulation (MDSim)

Methodology

A Cloud Benchmark Suite Combining Micro and Applications Benchmarks QUDOS@ICPE'18, Scheuner and Leitner

2018-07-02

[1] A. Abedi and T. Brecht. Conducting repeatable experiments in highly variable cloud computing environments. ICPE'17

Cloud WorkBench (CWB)

CHALMERS

INIVERSITY OF TECHNOLOGY

Tool for scheduling cloud experiments

O sealuzh/cloud-workbench

Cloud Work Bench – Infrastructure-as-Code Based Cloud Benchmarking CloudCom'14, Scheuner, Leitner, Cito, and Gall

Cloud WorkBench: Benchmarking IaaS Providers based on Infrastructure-as-Code Demo@WWW'15, Scheuner, Cito, Leitner, and Gall

Methodology

A Cloud Benchmark Suite Combining Micro and Applications Benchmarks QUDOS@ICPE'18, Scheuner and Leitner Estimating Cloud Application Performance Based on Micro Benchmark Profiling CLOUD'18, Scheuner and Leitner

Performance Data Set

webservices	Instance Type	vCPU	ECU*	RAM [GiB]	Virtualization	Network Performance		
	m1.small	1	1	1.7	PV	Low	eu + us	
	m1.medium	1	2	3.75	PV	Moderate		
	m3.medium	1	3	3.75	PV /HVM	Moderate	eu + us	
	m1.large	2	4	7.5	PV	Moderate		
	m3.large	2	6.5	7.5	HVM	Moderate	eu	
RQ1+2 -	m4.large	2	6.5	8.0	HVM	Moderate	_	
	c3.large	2	7	3.75	HVM	Moderate		
	c4.large	2	8	3.75	HVM	Moderate		
	c3.xlarge	4	14	7.5	HVM	Moderate		
	c4.xlarge	4	16	7.5	HVM	High		
	c1.xlarge	8	20	7	PV	High		

* ECU := Elastic Compute Unit (i.e., Amazon's metric for CPU performance)

5

>240 Virtual Machines (VMs) à 3 Iterations \rightarrow ~750 VM hours

>60'000 Measurements (258 per instance)

PRE – Performance Variability

Results

Does the performance of equally configured cloud instances vary relevantly?

RQ1 – Estimation Accuracy

How accurate can a set of micro benchmarks estimate application performance?

RQ2 – Micro Benchmark Selection

Which subset of micro benchmarks estimates application performance most accurately?

	Relative Error [%]
Micro Benchmark	
Sysbench – CPU Multi Thread	12
Sysbench – CPU Single Thread	454
Baseline	
vCPUs	616
ECU (i.e., Amazon's metric for CPU performance)	359
Cost	663

RQ – Implications

Suitability of **selected** micro benchmarks to estimate application performance

Benchmarks cannot be used interchangeable \rightarrow Configuration is important

Baseline metrics vCPU and ECU are insufficient

Threats to Validity

Construct Validity

Almost 100% of benchmarking reports are wrong because benchmarking is "very very error-prone"¹ [senior performance architect @Netflix]

 \rightarrow Guidelines, rationalization, open source

External Validity (Generalizability)

Other cloud providers? Larger instance types? Other application domains? → Future work

Internal Validity

the extent to which cloud environmental factors, such as multi-tenancy, evolving infrastructure, or dynamic resource limits, affect the performance level of a VM instance

 \rightarrow Variability PRE, stop interfering process

Reproducibility

the extent to which the methodology and analysis is repeatable at any time for anyone and thereby leads to the same conclusions

- A dynamic cloud environment
- \rightarrow Fully automated execution, open source

¹ <u>https://www.youtube.com/watch?v=vm1GJMp0QN4&feature=youtu.be&t=18m29s</u>

Related Work

Application Performance Profiling

- System-level resource monitoring [1,2]
- Compiler-level program similarity [3]

[1] Athanasia Evangelinou, Michele Ciavotta, Danilo Ardagna, Aliki Kopaneli, George Kousiouris, and Theodora Varvarigou. Enterprise applications cloud rightsizing through a joint benchmarking and optimization approach. *Future Generation Computer Systems*, 2016
[2] Mauro Canuto, Raimon Bosch, Mario Macias, and Jordi Guitart. A methodology for full-system power modeling in heterogeneous data centers. In *Proceedings of the 9th International Conference on Utility and Cloud Computing (UCC '16)*, 2016
[3] Kenneth Hoste, Aashish Phansalkar, Lieven Eeckhout, Andy Georges,

Lizy K. John, and Koen De Bosschere. **Performance prediction based on** inherent program similarity. In *PACT* '06, 2006

- Trace and reply with Cloud-Prophet [4,5]
- Bayesian cloud configuration refinement for big data analytics [6]

[4] Ang Li, Xuanran Zong, Ming Zhang, Srikanth Kandula, and Xiaowei Yang. **Cloud-prophet: predicting web application performance in the cloud**. *ACM SIGCOMM Poster*, 2011

[5] Ang Li, Xuanran Zong, Srikanth Kandula, Xiaowei Yang, and Ming Zhang.
Cloud-prophet: Towards application performance prediction in cloud.
In Proceedings of the ACM SIGCOMM 2011 Conference (SIGCOMM '11), 2011
[6] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman, Minlan Yu, and Ming Zhang.

Cherrypick: Adaptively unearthing the best cloud configurations for big data analytics. In 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17), 2017

Conclusion

Motivation: Capacity Planning in laaS Clouds

What cloud service (i.e., instance type) should I choose?

Which subset of micro benchmarks estimates application performance most accurately?				
	Relative Error [%]			
Micro Benchmark				
Sysbench - CPU Multi Thread	12			
Sysbench - CPU Single Thread	454			
Baseline				
vCPUs	616			
ECU (i.e., Amazon's metric for CPU performance)	359			
Cost	663			

RO2 - Micro Benchmark Selection

✓ scheuner@chalmers.se

♀ joe4dev

Methodology

RQ – Implications

Suitability of **selected** micro benchmarks to estimate application performance

Benchmarks cannot be used interchangeable \rightarrow Configuration is important

Baseline metrics vCPU and ECU are insufficient