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Motivation: Capacity Planning in IaaS Clouds
What cloud provider should I choose?

https://www.cloudorado.com
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Motivation: Capacity Planning in IaaS Clouds
What cloud service (i.e., instance type) should I choose?

t2.nano
0.05-1 vCPU
0.5 GB RAM

$0.006/h

x1e.32xlarge
128 vCPUs

3904 GB RAM
$26.688 hourly

à Impractical to Test 
all Instance Types
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Topic: Performance Benchmarking in the Cloud

“The instance type itself is a 
very major tunable parameter”

! @brendangregg re:Invent’17
https://youtu.be/89fYOo1V2pA?t=5m4s
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Problem: Isolation, Reproducibility of Execution
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Research Questions
PRE – Performance Variability
Does the performance of equally configured cloud instances vary relevantly?

RQ1 – Estimation Accuracy
How accurate can a set of micro benchmarks estimate application 
performance?

RQ2 – Micro Benchmark Selection
Which subset of micro benchmarks estimates application 
performance most accurately?
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Methodology
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CPU
• sysbench/cpu-single-thread
• sysbench/cpu-multi-thread
• stressng/cpu-callfunc
• stressng/cpu-double
• stressng/cpu-euler
• stressng/cpu-ftt
• stressng/cpu-fibonacci
• stressng/cpu-int64
• stressng/cpu-loop
• stressng/cpu-matrixprod

Memory
• sysbench/memory-4k-block-size
• sysbench/memory-1m-block-size

Broad resource coverage and specific resource testing

Micro Benchmarks
Micro 

Benchmarks

CPU Memory I/O Network

I/O
• [file I/O] sysbench/fileio-1m-seq-write
• [file I/O] sysbench/fileio-4k-rand-read
• [disk I/O] fio/4k-seq-write
• [disk I/O] fio/8k-rand-read 

Network
• iperf/single-thread-bandwidth
• iperf/multi-thread-bandwidth
• stressng/network-epoll
• stressng/network-icmp
• stressng/network-sockfd
• stressng/network-udp

Software (OS)
• sysbench/mutex
• sysbench/thread-lock-1
• sysbench/thread-lock-128
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Application Benchmarks
Overall performance
(e.g., response time)

Application
Benchmarks

Molecular Dynamics 
Simulation (MDSim)

WordPress Benchmark (WPBench)

Multiple short blogging
session scenarios
(read, search, comment)
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Methodology
Benchmark 

Design
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A Cloud Benchmark Suite Combining Micro and 
Applications Benchmarks
QUDOS@ICPE’18, Scheuner and Leitner
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Execution Methodology

guidelines, the authors point out that even with such guidelines,
comparing multiple alternatives and conducting repeatable experi-
ments on EC2 might be challenging or impossible due to the high
variability. In the paper, we directly examine methodologies for
conducting experiments in such environments.

Despite, the high variation in the performance of cloud comput-
ing systems, a number of studies [10, 4] choose to run the ex-
periment only once. More rigorously conducted evaluations in-
volve running experiments multiple times and reporting the aver-
age value. For example, some studies [7, 12, 5, 6] use an eval-
uation technique we call multiple consecutive trials (described in
Section 3). In Section 4, we show how variations in the cloud en-
vironment might lead to misleading results if these techniques are
utilized for evaluation.

We recently studied methodologies for conducting repeatable ex-
periments and fair comparisons when performing performance eval-
uations in WiFi networks [2]. This study [2] shows that many
commonly used techniques for the experimental evaluation of WiFi
networks are flawed and could result in misleading conclusions be-
ing drawn. In that work, although we propose the use of random-
ized multiple interleaved trials (RMIT) (described in Section 3) as
a methodology for coping with changing wireless channel condi-
tions, randomization was not necessary. In this paper, we examine
commonly used approaches for measuring and comparing perfor-
mance as well as the suitability of RMIT in a completely different
scenario, namely cloud computing environments. We find that ran-
domization is required, due to periodic changes in the environment,
and that RMIT can be used to obtain repeatable results.

Some work [3, 4] has proposed techniques to reduce the vari-
ability of application performance when executing in cloud en-
vironments by limiting variability of network performance. Un-
fortunately, such work only reduces but does not eliminate vari-
ability. Other shared resources such as disks can also cause per-
formance measurements to be highly variable. One study [9] re-
ports that during off-peak hours disk read bandwidths would range
from 100–140 MB/sec, while during peak hours it ranged from 40–
70 MB/sec. Moreover, even with techniques to reduce variability,
methodologies are still needed to ensure that differences in perfor-
mance of different alternatives are due to the differences in those
alternatives, rather than differences in the conditions under which
they were executed.

3. OVERVIEW OF METHODOLOGIES
We use the term trial to refer to one measurement, typically ob-

tained by running a benchmark or micro-benchmark for some pe-
riod of time (the length of the trial). An experiment can be com-
prised of multiple trials executing the same benchmark, where the
results of the experiment are reported over the multiple trials (e.g.,
the average of the measurements obtained over the trials).

Most experiments conducted in cloud computing environments
utilize the single trial or multiple consecutive trials methodologies
(referred to as commonly used methodologies in this paper). In
previous work [2], we have argued for and demonstrated the use of
Multiple Interleaved Trials and Randomized Multiple Interleaved
Trials. We now briefly explain each of these methodologies.
• Single Trial: In this approach, an experiment consists of only a

single trial. Figure 1-A shows an example of this approach with
three alternatives. The performance results obtained from sin-
gle trials are compared directly. This is the easiest methodology
for running an experiment to compare multiple alternatives.

• Multiple Consecutive Trials: All trials for the first alterna-
tive are run, followed by the second alternative and each of the

remaining alternatives. Figure 1-B shows the Multiple Consec-
utive Trials technique for 3 alternatives.

• Multiple Interleaved Trials: One trial is conducted using the
first alternative, followed by one trial with the second, and so
on until each alternative has been run once. When one trial has
been conducted using each alternative we say that one round
has been completed. Rounds are repeated until the appropriate
number of trials has been conducted (Figure 1-C).

• Randomized Multiple Interleaved Trials:
If the cloud computing environment is affected at regular in-
tervals, and the intervening period coincides with the length of
each trial, it is possible that some alternatives are affected more
than others. Therefore, the randomized multiple interleaved tri-
als methodology randomly reorders alternatives for each round
(Figure 1-D). In essence, a randomized block design [13] is
constructed where the blocks are intervals of time (rounds) and
within each block all alternatives are tested, with a new random
ordering of alternatives being generated for each block.

A B C A B C B C

B A C C B A A C B
D) Randomized Multiple Interleaved Trials (RMIT)

Figure 1: Different methodologies: with 3 alternatives

3.1 Methodologies used in Practice
To illustrate that these methodologies are actually used in prac-

tice, we studied the performance evaluation methodologies used in
the 38 research papers published in the ACM Symposium on Cloud
Computing 2016 (SoCC’16). 9 papers conduct experimental evalu-
ations on public clouds (7 on Amazon EC2, 1 on Microsoft Azure,
and 1 on Google computing engine). We found that the single trial
and multiple consecutive trials (MCT) methodologies are utilized
by 7 and 4 papers respectively (some papers use both techniques).
No other evaluation methodology is used in these papers. Addi-
tionally, 9 other papers also use these two methodologies when
conducting evaluations on research clusters.

The fundamental problem is that researchers often incorrectly
assume that the characteristics of the systems and networks being
used and workloads that are simultaneously executing during their
experiments, do not change in ways that impact the performance of
the artifacts they are evaluating. Previous work has demonstrated
that performance is in fact impacted [14, 11]. In this paper, we ex-
amine methodologies commonly used for comparing performance
in cloud environments and describe our RMIT methodology that is
designed to handle environments in which performance measure-
ments are variable due to circumstances which can not be con-
trolled. To the best of our knowledge, ours is the first work that
studies the (randomized) multiple interleaved trials methodologies
in the context of the repeatability of experiments in cloud comput-
ing environments.

4. EVALUATION
For our evaluation, we utilize traces, collected from benchmark

measurements by other researchers [14], conducted over extended
period of time on Amazon EC2 servers. The authors of that paper

30 benchmark scenarios
3 trials
~2-3h runtime

[1] A. Abedi and T. Brecht. Conducting repeatable experiments in highly variable cloud computing environments. ICPE’17

[1] 
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Benchmark Manager
Cloud WorkBench (CWB)
Tool for scheduling cloud experiments

! sealuzh/cloud-workbench
Cloud Work Bench – Infrastructure-as-
Code Based Cloud Benchmarking
CloudCom’14, Scheuner, Leitner, Cito, and Gall

Cloud WorkBench: Benchmarking IaaS 
Providers based on Infrastructure-as-Code
Demo@WWW’15, Scheuner, Cito, Leitner, and Gall
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A Cloud Benchmark Suite Combining Micro and 
Applications Benchmarks
QUDOS@ICPE’18, Scheuner and Leitner

Estimating Cloud Application Performance
Based on Micro Benchmark Profiling
CLOUD’18, Scheuner and Leitner
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Performance Data Set
eu + us

eu + us

eu

*

* ECU := Elastic Compute Unit (i.e., Amazon’s metric for CPU performance)

>240 Virtual Machines (VMs) à 3 Iterations à ~750 VM hours

>60’000 Measurements (258 per instance)

PRE

RQ1+2

m1.small 1 1 1.7 PV Low

m1.medium 1 2 3.75

Instance Typ e vCPU ECU RAM [GiB] Virtualization Network Performance

PV Moderate

m3.medium 1 3 3.75 PV /HVM Moderate

2m1.large 4 7.5 PV Moderate

2m3.large 6.5 7.5 HVM Moderate

2m4.large 6.5 8.0 HVM Moderate

2c3.large 7 3.75 HVM Moderate

c4.large 2 8 3.75 HVM Moderate

4c3.xlarge 14 7.5 HVM Moderate

4c4.xlarge 16 7.5 HVM High

c1.xlarge 8 20 7 PV High
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4.41 4.3
3.16 3.32

4.14

2 outliers

(54% and 56%)

0

5

10

20

30

m1.small (eu) m1.small (us) m3.medium (eu) m3.medium (us) m3.large (eu)

Configuration [Instance Type (Region)]

R
e
la

tiv
e
 S

ta
n
d
a
rd

 D
e
vi

a
tio

n
 (

R
S

D
) 

[%
]

Threads Latency
Fileio Random

Network
Fileio Seq.

mean

PRE – Performance Variability
Does the performance of equally configured cloud instances vary relevantly?

Results
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Instance Type1
(m1.small)

Instance Type2

Instance Type12
(c1.xlarge)

…
micro1, micro2, …, microN

app1, app2

ap
p 1

micro1

Linear Regression
Model

RQ1 – Estimation Accuracy
How accurate can a set of micro benchmarks estimate application 
performance?

Approach

Forward feature selection
to optimize relative error



2018-07-02 IEEE CLOUD'18 21

RQ1 – Estimation Accuracy
How accurate can a set of micro benchmarks estimate application 
performance?
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RQ2 – Micro Benchmark Selection
Which subset of micro benchmarks estimates application 
performance most accurately?

8/25/18 Chalmers 22

Results

Relative Error [%]
Micro Benchmark
Sysbench – CPU Multi Thread 12
Sysbench – CPU Single Thread 454
Baseline
vCPUs 616
ECU 359
Cost 663

(i.e., Amazon’s metric for CPU performance)
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RQ – Implications

Suitability of selected micro benchmarks to 
estimate application performance

Benchmarks cannot be used interchangeable
à Configuration is important

Baseline metrics vCPU and ECU are insufficient
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Threats to Validity
Construct Validity
Almost 100% of benchmarking reports are wrong 
because benchmarking is "very very error-prone”1

[senior performance architect @Netflix]
à Guidelines, rationalization, open source

1 https://www.youtube.com/watch?v=vm1GJMp0QN4&feature=youtu.be&t=18m29s

Internal Validity
the extent to which cloud environmental factors, 
such as multi-tenancy, evolving infrastructure, or 
dynamic resource limits, affect the performance 
level of a VM instance
à Variability PRE, stop interfering process

External Validity (Generalizability)
Other cloud providers?
Larger instance types?
Other application domains?
à Future work

Reproducibility
the extent to which the methodology and analysis 
is repeatable at any time for anyone and thereby 
leads to the same conclusions
! dynamic cloud environment
à Fully automated execution, open source

https://www.youtube.com/watch?v=vm1GJMp0QN4&feature=youtu.be&t=18m29s
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Application Performance 
Prediction

Application Performance
Profiling

• System-level resource monitoring [1,2]
• Compiler-level program similarity [3]

• Trace and reply with Cloud-Prophet [4,5] 
• Bayesian cloud configuration refinement 

for big data analytics [6]
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RQ – Implications

Suitability of selected micro benchmarks to 
estimate application performance

Benchmarks cannot be used interchangeable
à Configuration is important

Baseline metrics vCPU and ECU are insufficient
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RQ1 – Estimation Accuracy
How accurate can a set of micro benchmarks estimate application 
performance?
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