#23 CHALMERS

UNIVERSITY OF TECHNOLOGY

Transpiling Applications into

&1)) UNIVERSITY OF GOTHENBURG

Optimized Serverless Orchestrations

Short Paper

Joel Scheuner

Philipp Leitner

Joel Scheuner

% scheuner@chalmers.se
O joeddev

¥ @joe4dev

WALLENBERG Al,
Supported by NV \/\S P |imsiicsms,

UNIVERSITY OF TECHNOLOGY

| - | 4
A s _'-é\ \ P
#) CHALMERS f®%)) UNIVERSITY OF GOTHENBURG I >

What is Serverless Computing?

Triggers Store

> >

Event Function Database
(service, HTTP, ...)

v \\ I,,A:f'f-ff\:;‘..
(, CHALMERS | (8§} UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Serverless Application

B @@ @@

N \ Composition Problem

D D

A
(@fq’:} CHALMERS |?_jt;: UNIVERSITY OF GOTHENBURG

Functions into apps
v\\‘ “I want to sequence functions” y

— “l'want to run functions in parallel”

/‘ “I want to select functions based on data”

“I want try/catch/finally”

7\, b,
—~

N s v AAIC vAntlimv st DNANL. NIFTTAAZL ALINICLII CAvirmvdl A A rvscaAs saidls AANCO Ot Aan Fyvn AL fames fON\N/IDNONA N\

“l want to retry functions” /.\’
“I have code that runs for hours” &

https://youtu.be/75MRve4nv8s?t=228

(} CHALMERS @lx UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Composition Problem

“We need better orchestration for serverless workflows to make system

design more straightforward and easier to implement”
Lessons learned experimenting with an AWS Lambda orchestration engine, blog 2017 by Ben Kehoe

“I'm looking for better ways to compose and re-use functions and serverless

resources, cloudformation just doesn't cut it”
My wish list for AWS Lambda in 2018, blog 2018 by Yan Cui

“We don’t yet have the Rails of serverless—something that doesn’t necessarily

expose that it's actually a Lambda function under the hood.”
Serverless is eating the stack and people are freaking out—as they should be, blog 2018 by Forrest Brazeal

composition and testing of functions [...] sparsely covered by current scientific
literature but [...] immensely important in practice"

H
-
1
1
1
1
1 A mixed-method empirical study of Function-as-a-Service software development in industrial practice, JSS 2019
1
! “ H H ”
q 1 “serverless frameworks need to provide a way for tasks to coordinate

1

— 1 I
1
1
1
1
1
1
1
1

" 1
1
1
1
1
1
1
1
1
Cloud Programming Simplified: A Berkeley View on Serverless Computing, technical report 2019 1
1
1
1
1
1
1
1
1
1

“Research will need to focus on what composition models would fit FaaS, on
ways to express these compositions of functions, and on how to support

(frequent) function-updates and hybrid-cloud deployment.”
The SPEC Cloud Group's Research Vision on FaaS and Serverless Architectures, WOSC 2017

2019-06-16 Chalmers | University of Gothenburg 5)

http://blog.binaris.com/my-wish-list-for-aws-lambda-in-2018/
https://read.acloud.guru/serverless-is-eating-the-stack-and-people-are-freaking-out-and-they-should-be-431a9e0db482
https://read.acloud.guru/some-lessons-learned-about-lambda-orchestration-1a8b72a33fd2
https://arxiv.org/abs/1902.03383
https://doi.org/10.1016/j.jss.2018.12.013
https://dl.acm.org/citation.cfm?id=3154848

5 A
} CHALMERS | ([@% UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

The Serverless Trilemma (ST)

ST-safe iff:

The Serverless Trilemma

Function Composition for Serverless Computing

Toana Baldini Perry Cheng Stephen J. Fink
IBM TJ. Watson Research Center IBM TJ. Watson Research Center IBM TJ. Watson Research Center
u u Yorktown Heights, NY, USA Yorktown Heights, NY, USA Yorktown Heights, NY, USA
ioana@us.ibm.com perry@us.ibr fink@us.ib
™ Nick Mitchell Vinod Muthusamy Rodric Rabbah
IBM TJ. Watson Rescarch Center ~ IBM TJ. Watson Rescarch Center IBM TJ. Watson Research Center
Yorktown Heights, NY, USA Yorktown Heights, NY, USA Yorktown Heights, NY, USA
nickm@us.ibm.com iby b

black boxes

2. Compositions of functions
should be functi

themselves

3. No double billing

Philippe Suter
Two Sigma Investments, LP
New York, NY, USA
hil

Olivier Tardieu
IBM TJ. Watson Research Center
Yorktown Heights, NY, USA
b

Abstract

‘The field of serverless computing has recently emerged in
support of highly scalable, event-driven applications. A server-
less application is a set of stateless functions, along with the
events that should trigger their activation. A serverless run-
time allocates resources as events arrive, avoiding the need
for costly pre-allocated or dedicated hardware.

While an atractive economic proposition, serverless com-
puting currently lags behind the state of the art when it
comes to function composition. This paper addresses the chal-
lenge of programming a composition of functions, where the
composition is itself a serverless function.

We that function
into a serverless application s possible, but requires a careful
evaluation of trade-offs. To help in evaluating these trade-
offs, we identi
be considered as black boxes; function composition should
obey a substitution principle with respect to synchronous
invocation; and invocations should not be double-billed.

Furthermore, we argue that, if the serverless runtime is
limited to a reactive core, i one that deals only with dispatch-
ing functions in response to events, then these constraints

Permission to make digital or hard copies of allor part of this wark for

made]
this notice and the first page. Copyrig! »

of M

eredit is permitted. To capy otherwisc, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
Permissions from permissions@acmorg

Onward!'17, October 25-27, 2017, Vancouver, Canada

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5530-8/17/10.
hitps://doi.org/10.1145/3133830.3133855

om

form the serverless trilemma. Without specific runtime sup-
port, compositions-as-functions must violate at least one of
the three constraints.

Finally, we demonstrate an extension to the reactive core
of an open-source serverless runtime that enables the se-
quential of functions in a tri 1
way. We conjecture that this technique could be generalized
to support other combinations of functions.

CCS Concepts +Software and its engineering — Cloud
computing; Organizing principles for web applications;
Keywords cloud, serverless, functional, composition
ACM Reference Format:

Toana Baldini, Perry Cheng, Stephen J. Fink, Nick Mitchell, Vinod
Muthusamy, Rodric Rabbah, Philippe Suter, and Olivier Tardieu.
2017. The Serverless Trilemma: Function Composition for Server-
less Computing. In Proceedings of 2017 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on
gramming and Software (Onward”’17). ACM, New York, NY, USA,
15 pages. hitps:/doi org/10.1145/3133850.3133855

1 Introduction

Under economic pressure to innovate ever more rapidly, or-
ganizations routinely exploit cloud computing rather than
purchase hardware and operate data centers. Serverless com-
puting, also known as functions-as-a-service, has recently
emerged in support of highly scalable, event-driven applica-
tions in the cloud. It allows developers to write short-running,
stateless functions that can be triggered by events generated
from middleware, sensors, services, or users.

‘The serverless paradigm was pioneered by Amazon with
the introduction of Lambda [Cross 2016], and today every
major cloud provider offers a serverless platform [Apache
2016; Google 2016; Microsoft 2016]. The model appeals to
many developers since it lets them focus on their applicatio:

! The Serverless Trilemma — Function Composition for Serverless Computing, Onward! 2017

89

2019-06-16 Chalmers | University of Gothenburg

https://dl.acm.org/citation.cfm?id=3133855

%* CHALMERS NIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Composition Approaches

Function Fusion Function Coordinator Function Workflows

.
0
.
.
.....
.

engine
Function Chaining Event-Driven Function Composition
\ @
Background:
Function Composition in a Serverless World, Kubeconf 2018

by database or by queue
Serverless Apps with AWS Step Functions, AWS re:invent 2016

Chalmers | University of Gothenburg 7

2019-06-16

https://blog.fission.io/posts/kubecon-eu-18/
https://www.slideshare.net/AmazonWebServices/new-launch-serverless-apps-with-aws-step-functions

CHALMERS | @@ UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Function Orchestration Systems

wl H¥PH ..
u‘i‘j), fission

™
workflows
AWS Step Functions Azure Durable Functions Apache OpenWhisk Composer
{ output: ExtractResult
"Comment" : "A demo Sequence state . tasks:
machine", df.orchestrator(functionk(context) { composer. let ({ Fib:
"StartAt" : "f1", const parallelTasks = []; P 6_ 224 run: repeat
"States" : { . . ; +, inputs: " "
wEln s { // Get a list of N work items to process in parallel. composer.while(params => times: "{ param() || @ }
TNext" : "2 const workBatch = yield context.df.callActivity("F1"); o 5 i do:
"Resource" : ! for (let i = 0; i < workBatch.length; i++) n ;ara;;_:>'{ n/=2 1 run: javascript
"arn:aws: lambda:REGION: ACCOUNT_ID: func . E?r?}}?lTasks.push(context.df.callAct1v1ty("F2”, composer.function(paramé . inputs
tion: FUNCTION_NAME", workBatchlil)); console. log("n=${n}")) _prev:
"Type" : "Task" ¥); fnl: 0
3, fn2: 1
nf2n s { yield context.df.Task.all(parallelTasks); args:
“Next" : "f3" fnl: "{ task().Inputs._
“"Resource" : L[g // Aggregate all N outputs and send the result to F3. fn2: "{ task().Inputs._
“Type" : "Tésku” ! const sum = parallelTasks.reduce((prev, curr) => prev expr: "({
1 + curr, 0); ‘fnl': fn2,
[T, yield context.df.callActivity("F3", sum); 'fn2': (fnl + fn2)
“End" : true, 3 1
"Resource" : "[.]"
“Type" : "Task"

2019-06-16 Chalmers | University of Gothenburg 8

https://www.serverlesscomputing.org/wosc4/

(; CHALMERS @ux UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Function Orchestration Systems

Function-focus =» Application-focus

" CHALMERS @ UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Transpile

_@} >~
t

Feedback

| Moni
onitor
§<

Application Serverless
Code Orchestration

*source-to-source transformation of the abstract syntax tree (AST)

2019-06-16 Chalmers | University of Gothenburg 10

UNIVERSITY OF TECHNOLOGY

‘ CHA'—MERS 8% UNIVERSITY OF GOTHENBURG

F a Ce b O O k l.faibook/jsccdeshift

Prototype Implementation jscodeshit ==

with recast o=

Transpile
{} >
}

Feedback

| nitor
@< Monit JS

JS

Javascript Apache

Serverless - OpenWhisk
“ Orchestration Composer

©watch~ 238 HStar 4052 YFork 783 [J apache / incubator-openwhisk-composer
APACHE

[J apache / incubator-openwhisk

.
<> Code Issues 409 Pull requests 26 Projects 0 Wik Security Insights O pe nW h I S k <> Code Issues 7 Pull requests 0

Composer is a new programming model for composit

Sec

Apache OpenWhisk is a serverless event-based programming service and an Apache Incubator project. https://openwhisk.apache.org/

.
serverless faas apache docker ft vice serverle L ft k openwhisk scala
O u u l I C I O l I S D 109 commits ¥ 1branch

11

Chalmers | University of Gothenburg

2019-06-16

UNIVERSITY OF TECHNOLOGY

%* CHALMERS | () UNIVERSITY OF GOTHENBURG

Transpilation Example

function f1() { function f2() { function f3() {
return { message: 'fl1' }; return { message: 'f2' }; return { message: 'f3' };

b b b

composer. sequence (

f1(); composer.action('f1', { action: f1 }),
2(); {@}—» composer.action('f2', { action: f2 }),
3(); composer.action('f3', { action: f3 })
);
var value = 6 composer.let({
if (ngggli %ozTCa?&e{/ 277' — 1, cg;;ggéréif(params => value % 2 === 0,
! - 109 ! params => console.log(value / 2)));

2019-06-16 Chalmers | University of Gothenburg 12

UNIVERSITY OF TECHNOLOGY

CHALMERS (®%)) UNIVERSITY OF GOTHENBURG

CompOSitiOn Example Visual Recognition Application

JSON

2019-06-16

valid
- ‘ - o _>_>‘_>‘

: "giant panda, panda, panda bear, [..]", "probability": 0.9993536472320557 },
' American Staffordshire terrier, [..]", "probability": 0.00012968324881512672},
{"className": "Arctic fox, white fox, Alopex lagopus", "probability": 0.00008463481208309531}]

[{ "className'
=P { "className

{ "className":

tiger cat", "probability": 0.44864678382873535 },
'lynx, catamount", "probability": 0.4224271774291992 },
"tabby, tabby cat", “"probability": 0.07799174636602402 }]

/

UNIVERSITY OF TECHNOLOGY

Ash
(, CHALMERS | (8§ UNIVERSITY OF GOTHENBURG

Example Transformation

{l - ‘ - o o o ‘ o ‘
JSON

composer.if(composer.action('verifyUrl', { action: verifyuUrl }),
composer.sequence(

if(verifyUrl(url)) { composer.action('downlqad', { action: download }),
var img = download(url); composer.action('classify', { action: {
var prediction = classify(img); kind: ‘blackbox’, _ ,
var label = format(prediction); image: 'jamesthomas/action-nodejs-v8:tfjs’,
return filter(result):; code: const main = ${classify} ,

1 else { memory: 512 FhH, .
return logError(); composer.action('format', { action: format }),

1 composer.action('filter', { action: filter })

), composer.action('logError', { action: logError })

2019-06-16

Chalmers | University of Gothenburg 14

%* CHALMERS @u UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Composition Performance (1) (f)

IBM Cloud
Functions

{l q‘ﬁ_»_»‘_»‘
JSON

Execution Time* [ms]
Cold 300 1200 1300 300 300

Warm 2 600 700 2 2

*exemplary measurements

2019-06-16 Chalmers | University of Gothenburg

LA
(, CHALMERS | @@ UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Composition Performance (2) (f)

IBM Cloud
Functions

£

JSON

Verify
URL

Filter

—_— Download

Execution Time* [ms]
Cold 1400 1300 (warm) 4
Warm 600 700 4

*exemplary measurements

2019-06-16 Chalmers | University of Gothenburg

UNIVERSITY OF TECHNOLOGY

%* CHALMERS NIVERSITY OF GOTHENBURG

IBM Cloud
Functions

Composition Cost

128 MB 512 MB

-_— ‘ -_— Filter

Verify

URL — Download

Monthly costs* [USD]

256 2.6 4x
**Pricing based on: https://cloud.ibm.com/openwhisk/learn/pricing
*pased on 1°000°’000 warm-start requests per month $0.000017 per second of execution, per GB of memory allocated

2019-06-16 Chalmers | University of Gothenburg 17

https://cloud.ibm.com/openwhisk/learn/pricing

%* CHALMERS @u UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Benefits
* More accessible to build serverless applications
 Transpilation from generic JS to platform-specific code

» Faster application runtime
« Automated function fusion

« Cheaper computation cost
» Targeted function size

%* CHALMERS @u UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Limitations

* Function fusion only when code available
- violating ST black-box constraint

* Harder to debug at runtime
» Data marshalling overhead and limitations
* Integration into third party services

%* CHALMERS @u UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Future Work

» Extend transpilation prototype
« Support more composition primitives

* Integrate and evaluate dynamic deployment
alternatives

(#) craLvers

Transpile
3oy -
t
Feedback
| .
Monitor
=P
Application Serverless
Code Orchestration

Thursday 9:00 — 10:30 in N440:
Tutorial 5: Performance Benchmarking of Infrastructure-as-a-Service (laaS) Clouds with Cloud WorkBench

2019-06-16 Chalmers | University of Gothenburg 21

https://icac2019.cs.umu.se/workshops-and-tutorials/tutorials/performance-benchmarking-of-infrastructure-as-a-service-iaas-clouds-with-cloud-workbench/

CHALMERS

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Discussion Input S E Y-

CHALMERS | @@ UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

How should serverless compositions be expressed?

As data? As code?

"Comment"” : "A demo Sequence state machine",
"StartAt" : "f1",
"States" : {
i G
"Next" : "f2",
"Resource" : "arn:aws:lambda:REGION:ACCOUNT_ID: function:FUNCTION_NAME",
"Type" : "Task"

module.exports = composer.sequence(
composer.action('f1'),
composer.action('f2'),
composer.action('f3'),

’
"f2" o {);
"Next" : "f3",
"Resource" : "arn:aws:lambda:REGION:ACCOUNT_ID: function:FUNCTION_NAME",
"Type" : llTaskll :” "\‘
’ | f3 |
"f3" o { T
"End" true,
"Resource" : "arn:aws:lambda:REGION:ACCOUNT_ID: function:FUNCTION_NAME", @
"Type" : "Task"
H
H
final StateMachine stateMachine = stateMachine()
.comment("A demo Sequence state machine")
.startAt("f1")
.state("f1", taskState()
.resource("arn:aws: lambda:REGION: ACCOUNT_ID: function: FUNCTION_NAME") f]_() ;
.transition(next("f2")))
.state("f2", taskState() f2();

.resource("arn:aws: lambda:REGION: ACCOUNT_ID: function: FUNCTION_NAME")
“transition(next("3"))) 3();
.state("f3", taskState() ’
.resource("arn:aws: lambda:REGION:ACCOUNT_ID: function: FUNCTION_NAME")
.transition(end())
.build();

2019-06-16 Chalmers | University of Gothenburg 23

UNIVERSITY OF TECHNOLOGY

%* CHALMERS UNIVERSITY OF GOTHENBURG

Should machines decide upon deployment structure?

* Is is practical (e.g., understandable) to have
dynamically changing deployment structures’?

« Debugging (source maps)?
» Testing?

composer.if(composer.action('verifyUrl', { action: verifyurl }),
composer.sequence(
composer.action('download', { action: download }),
composer.action('classify', { action: { kind: 'blackbox', image:

if(verifyUrl(url)) { }gamesthomas/actlon—node]s—v8:tf]s , code: const main = ${classify}", memory: 512 }
A ’
var img = download(url); composer.action('format', { action: format }),
var prediction = classify(img); composer.action('filter', { action: filter })

), composer.action('logError', { action: logError })

} else {
logError();

var label = format(prediction); .),;_ e "

result = filter(result); {:C}}l) Entering composition[1].consequent[2]
- -> KoL o v | ——

}

2019-06-16 Chalmers | University of Gothenburg 24

%* CHALMERS @u UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Which application types benefit from this approach?

* Which applications have heterogenous-enough
footprints?

£

JSON

128 MB

Verify

URL Format — Filter

— Download

%* CHALMERS @u UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Any related work from (other) communities?

* Programming Languages (PL)
* Domain Specific Languages (DSL)
» Workflows

% scheuner@chalmers.se

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF TECHNOLOGY

S AR,
(, CHALMERS JNIVERSITY OF GOTHENBURG

Serverless Background

Q
()}
e,
)]
)
)
£
)]
-
O
c
@)
w
-]
®)
O
—“—
(@)
=
)
)
()
L —
)
=

<S> <P <P
P o<po<p

Functions
n n Containers

>

Virtual machines

Bare Metal

>

Decreasing concern (and control) over stack implementation
Source: © 2018 IBM Corporation

2019-06-16 Chalmers | University of Gothenburg

(; CHALMERS NIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Serverless Pros and Cons

<P < <
< <> <> <

<P <> <>
Containers + Tools
+ Control and Flexibility Functions
+ De Facto Standards
+ Fine-Grain Metering
+ Faster Autoscaling R
+ Event-driven Programming S < <
> <P <P <p
Containers Functions

Source: © 2018 IBM Corporation

2019-06-16 Chalmers | University of Gothenburg 29

A
(, CHALMERS | (84 UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Serverless Application Types

Serverless is good for Serverless is not good for
short-running long-running

Stateless ; stateful !
event-driven number crunching

Microservices

Mobile Backends

Bots, ML Inferencing
loT

Modest Stream Processing

Databases
Deep Learning Training

Heavy-Duty Stream Analytics

Numerical Simulation

09000

Video Streaming

©o0>00°

Service integration

Source: Slides Workshop of Serverless Computing (WoSC’4), 2018

2019-06-16 Chalmers | University of Gothenburg

https://www.serverlesscomputing.org/wosc4/

(; CHALMERS NIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Abstract Syntax Tree (AST)

6 . + VariableDeclaration {declarations, kind}
4

‘.’ar Va-l-ue - IfStatement {
1f (Va-l_ue o/o 2 === @) { - test: BinaryExpression {

console. log(value / 2); operator: "===

- left: BinaryExpression {
}' operator: "%"
- left: Identifier = gnode {
name: "value"
}
+ right: Literal {value, raw}
}
+ right: Literal {value, raw}
}

+ consequent: BlockStatement {body}

}

Tree Visualization using AST Explorer: https://astexplorer.net/

2019-06-16

Chalmers | University of Gothenburg 31

https://astexplorer.net/

3 CHALMERS UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

AST Transformation Example

function transform(file, api, options) {
imports.register(j, imports.config.CJSBasicRequire);
const { statement } = j.template;
const parsed = j(file.source)
parsed.find(j.CallExpression)
.replaceWith(function (path) {
const actionName = path.value.callee.name;
const left = j.memberExpression(
j.identifier('module'),
j.identifier('exports')
)
const right = j.callExpression(
j.memberExpression(
j.identifier('composer'),
j.identifier('action')
)y
[
j.literal(actionName),
createActionReference(actionName)
]
)

return j.assignmentExpression(
left,
right,
)
1)
const transformed = parsed.addImport(statement’
const composer = require('openwhisk—composer"');
")
const outputOptions = {
quote: 'single'

return transformed.toSource(outputOptions);

2019-06-16 Chalmers | University of Gothenburg

UNIVERSITY OF TECHNOLOGY

AWS Lambda Power Tuning

‘AWS Lambda Power Tuning

%\‘ CHALMERS NIVERSITY OF GOTHENBURG

™
AN

3» [256MB Executor J [512MB Executor J [1024MB Executor] |

Chalmers | University of Gothenburg

https://github.com/alexcasalboni/aws-lambda-power-tuning

