

Towards Measuring and Understanding Performance in Infrastructure- and Function-as-a-Service Clouds

Licentiate Seminar August 28, 2020, 14:00

Supervisors: Philipp Leitner Jan-Philipp Steghöfer

Discussion Leader: Alessandro Papadopoulos Joel Scheuner Scheuner@chalmers.se ↓ joe4dev joelscheuner.com

Supported by V//S

Methods and insights to guide performance-optimal cloud service selection

Figure adapted from S. Fink. Serverless – Where Have We Come? Where Are We Going? Keynote at WoSC@CLOUD. 2018.

CHALMERS

- C

What cloud service should I choose?

Data source: https://aws.amazon.com/blogs/aws/ec2-instance-history/

Types of Performance Benchmarks

Distinction based on: Z. Li, H. Zhang, L. O'Brien, R. Cai and S. Flint. On Evaluating Commercial Cloud Services: A Systematic Review. Journal of Systems and Software, 2013.

Related Work

CHALMERS

NIVERSITY OF TECHNOLOGY

[1] S. Ostermann et al. A Performance Analysis of EC2 Cloud Computing Services for Scientific Computing. Cloud Computing. 2009.

[2] A. losup et al. Performance Analysis of Cloud Computing Services for Many-Tasks Scientific Computing, IEEE Trans. on Parallel and Distributed Systems. 2011.

[3] K. R. Jackson et al. Performance Analysis of High Performance Computing Applications on the Amazon Web Services Cloud, CloudCom. 2010.

[4] B. F. Cooper et al. Benchmarking Cloud Serving Systems with YCSB, Symposium on Cloud Computing. 2010.

[5] M. Ferdman et al. Clearing the Clouds: A Study of Emerging Scale-out Workloads on Modern Hardware, ASPLOS. 2012.

[6] Y. Gan et al. An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud & Edge Systems, ASPLOS. 2019.

Research Goal

My licentiate thesis aims towards measuring and understanding performance in laaS and FaaS clouds.

Research Questions

How can performance be measured and evaluated in laaS clouds?

What is the current understanding of performance in FaaS clouds?

RQ1: Sub-Questions

RQ1.1: How can multiple performance benchmarks reproducibly evaluate laaS cloud performance?

RQ1.2: How suitable are micro-benchmarks to estimate application performance in IaaS clouds?

RQ1: Main Findings

RQ1.1: How can multiple performance benchmarks reproducibly evaluate laaS cloud performance?

Execution methodology combining benchmarks

RQ1.2: How suitable are micro-benchmarks to estimate application performance in IaaS clouds?

Selected micro-benchmarks can be suitable

Benchmarks cannot be used interchangeably

Baseline metrics vCPU and ECU* are insufficient

*provider measure for compute power

RQ1: Research Methodology

Field Experiment

laaS Benchmark Suite

RQ1.1: How can multiple performance benchmarks reproducibly evaluate laaS cloud performance?

Execution methodology for benchmark suite

Reproducible results* from repeated executions under the same configuration $\begin{cases} 33 \text{ e} \\ 5 \text{ dif} \end{cases}$

38 benchmark metrics33 executions

5 different configurations

Application Performance Estimation

RQ1.2: How suitable are micro-benchmarks to estimate application performance in IaaS clouds?

tide micro ₁	Linear regression model		Web Application (Response Time)	Scientific App. (Duration)
		Sysbench CPU Multi-Thread	13%	8%
	11 Virtual machine types	Sysbench CPU Single-Thread	450%	230%
őlől	38 Benchmark metrics	ECU*	359%	206%
		*provider measure for compute power	Relative Error (i.e., MAPE) in percent	

From laaS to FaaS

How can performance be measured and evaluated in laaS clouds?

What is the current understanding of performance in FaaS clouds?

RQ2: Sub-Questions

RQ2.1: What are the characteristics of typical FaaS applications?

RQ2.2: What do existing FaaS performance studies evaluate?

RQ2.3: How reproducible are existing FaaS performance experiments?

RQ2: Main Findings

RQ2.1: What are the characteristics of typical FaaS applications?

FaaS applications typically exhibit workload burstiness

RQ2.2: What do existing FaaS performance studies evaluate?

CPUrmicro-benchmarks in AWS Lambda are studied most

RQ2.3: How reproducible are existing FaaS performance experiments?

Principles on reproducible cloud experimentation [1] are not followed

Academic studies were not consistently more reproducible

[1] A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. von Kistowski, A. Ali-Eldin, C. L. Abad, J. N. Amaral, P. Tuma and A. Iosup. Methodological Principles for Reproducible Performance Evaluation in Cloud Computing. IEEE Transactions on Software Engineering. 2019.

RQ2: Research Methodology

Qualitative Sample Study

89 FaaS applications

24 Characteristics

Documentation and code \rightarrow Primary research

112 FaaS performance studies

Literature Review

51 academic literature

61 grey literature

Studies and their design \rightarrow Secondary research

2020-08-28

FaaS Applications

RQ2.1: What are the characteristics of typical FaaS applications?

100% 89 FaaS applications

HALMERS

External Services

Dephdyymeent tPPaatóonm

PPoggaamnniniggLbagguagges

* Unknown for 30% of applications. Detailed results in accompanying technical report S. Eismann, J. Scheuner, E. van Eyk, M. Schwinger, J. Grohmann, N. Herbst, C. L. Abad, and A. Iosup A Review of Serverless Use Cases and their Characteristics, SPEC RG Cloud Working Group. 2020.

2S

Existing FaaS Performance Studies

RQ2.2: What do existing Fare merior mance studies are available and a statement of the second state of the

Azure Functions

Google Cloud Functions

Literature Type Literature Type 100% 51 academic literature studies 100% 61 grey literature studies

rm

stics

currency 2020-08-28

currondy

Benchmark Type Benchmark Type 67% Micro-benchmarks 82% 57% Application-benchmarks 31% 24% Both 13% Language Runtimes Language Runtimes

Python

Duthon

Micro-Benchmarks

MicroBptohmarkPlatform

External Services Extechelservices

-0

Duthan

Language Runtimes

Denne du ella ilit

6

RQ2.3: How reproducible are existing FaaS performance experiments? Following existing principles on reproducible cloud experimentation [1]

[1] A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. von Kistowski, A. Ali-Eldin, C. L. Abad, J. N. Amaral, P. Tuma and A. Iosup. Methodological Principles for Reproducible Performance Evaluation in Cloud Computing. IEEE Transactions on Software Engineering. 2019.

Conclusion

Improve future cloud performance evaluation studies

Guide performance-optimal cloud service selection

-

Ongoing Work

CHALMERS

NIVERSITY OF TECHNOLOGY

1) FaaS application performance benchmark

2) Performance-optimized FaaS applications

Joel Scheuner Scheuner@chalmers.se ♀ joe4dev scheuner.com

 Icons made by <u>Freepik</u>, <u>monkik</u>, <u>geotatah</u>, <u>mynamepong</u>, and <u>smashicons</u> from <u>www.flaticon.com</u>