
TriggerBench: A Performance
Benchmark for Serverless
Function Triggers
Short Paper

Supported by

Joel Scheuner
✉ scheuner@chalmers.se
! " joe4dev
! joelscheuner.com

2022-09-28

J. Scheuner, M. Bertilsson, O. Grönqvist, H. Tao,
H. Lagergren, JP. Steghöfer, P. Leitner

http://joelscheuner.com/

2022-09-28

Motivation
High latency is a problem in serverless
[Leitner et al., JSS’19. Mixed-method study.]

Serverless function triggers are insufficiently studied
[Scheuner et al., JSS’20. Multivocal literature review of 112 studies.]

Event-based triggers are the most cost effective control flow
[Quinn et al., WoSC’21. Implications of alternative serverless application control flow methods]

2

2022-09-28

To enable reproducible performance
evaluation of serverless function triggers

across cloud providers.

Goal of the Paper

3

2022-09-28

Progression of Deployment Options

Unit of Deployment

Le
ve

l o
f A

bs
tra

ct
io

n
Lo

w
H

ig
h

Coarse-grained Fine-grained

Bare Metal

VM VM

VM

Virtual Machines

Containers

Functions

Figure adapted from S. Fink. Serverless – Where Have We Come? Where Are We Going? Keynote at WoSC@CLOUD’18.
4

2022-09-28

Serverless Functions Model

Event

𝜆
Function1 Service

𝜆
Function2

Trigger Latency

5

Invoker
Function

t1

t2

t4

External
Service

Receiver
Function

t3
Initialize
Runtime

Invocationt4

Service call

Returning call
Function trigger

Tr
ig

ge
r L

at
en

cy

2022-09-28

Asynchronous Trigger
𝜆 𝜆 Challenge: Consistent view across

multiple (parallel) function invocations

à Distributed Tracing

Example AWS X-Ray Tracing Header
Root=1-5759e988-bd862e3fe1be46a994272793;
Parent=53995c3f42cd8ad8;
Sampled=1

6

2022-09-28

High-level Benchmarking Approach

Tracing Service

Function Code
+ Deployment Script

Cloud ProviderBenchmark Orchestrator

Workload Profile

 Deploy

 Invoke

Partial Traces Retrieve

Invoker
Function

Correlated Traces
 Analyze

Trace Points

External
Service

Receiver
Function

7

2022-09-28

Implementation

Tracing Service

Function Code
+ Deployment Script

Cloud ProviderBenchmark Orchestrator

Workload Profile

 Deploy

 Invoke

Partial Traces Retrieve

Invoker
Function

Correlated Traces
 Analyze

Trace Points

External
Service

Receiver
Function

ServiBench [1] +

Baseline workload 1 rps for 1h
à 3600 samples per trigger type

Trigger Types:
3 AWS + 8 Azure

8

[1] Let's Trace It: Fine-Grained Serverless Benchmarking using Synchronous and Asynchronous Orchestrated Applications. arXiv:2205.07696

2022-09-28

Trigger Types with Provider Mappings

service asynchronously triggers the receiver function at t3 and
additional queueing time might occur before proceeding with
initialization. Asynchronous triggers typically do not propagate
a tracing header. Hence, the receiver function creates a new
trace id that differs from the invoker function, essentially
breaking the trace into two partial/disconnected traces. To
mitigate this issue, we explicitly attach a tracing token to the
metadata or payload of the service call. At t4, we extract this
tracing token and send it to the tracing service together with
the new trace id of the receiver function. This custom trace
propagation enables our trace analysis to correlate such partial
traces (Section II-D). Finally, the function terminates without
returning to any caller, which makes observability hard without
distributed tracing.

B. Trigger Types

Table I summarizes eight common serverless trigger types
used in this study. The most popular trigger type in serverless
is the HTTP trigger according to an application characterization
study [12] and comprehensive analysis of the Azure production
workload [15]. This trigger reacts to an invocation of an HTTP
endpoint via a corresponding HTTP request and is inherently
synchronous (all other trigger types are asynchronous). In Azure
Functions, the queue trigger causes the second-most invocations
(33.5%) and is used by 15.2% of the functions [15]. Queues
are first-in, first-out and trigger a function whenever a new
message is received, thus enabling independent, asynchronous
processing of items involving considerable workload. The
cloud object storage trigger is important given that cloud
storage is the most popular external service used by serverless
applications [12]. The storage can trigger subscribed functions,
e.g., when a new item is created or an existing item is modified.

Table I
TRIGGER TYPES AND SERVICE MAPPINGS FOR AWS AND AZURE

Trigger AWS Service Azure Service

HTTP API Gateway API Management
Queue SQS Queue Storage
Storage S3 Blob Storage
Database DynamoDB⇤ CosmosDB
Event SNS⇤ Event Grid
Stream Kinesis⇤ Event Hubs
Message EventBridge⇤ Service Bus Topic
Timer CloudWatch Events⇤ Timer
⇤ Not implemented

We implement these three important triggers for the two
leading cloud providers AWS and Azure [12] and an additional
five triggers for Azure. Database triggers react to events
in a database such as insertion, deletion, or update. Event
triggers notify lightweight state changes. Their discrete event
distribution capabilities are typically used for reactive program-
ming [19]. Stream triggers are useful for big data pipelines
when events arrive in series, the ingestion rate of events is very
high (e.g., millions per second), and low latency is desirable.
Message triggers deliver data payloads reliably to subscribed
consumers and often come with advanced messaging features

such as routing and filtering [19]. Finally, timer triggers are
used for scheduled function executions, either at a certain
interval or at certain times of the day.

C. Workload Profile
We choose a baseline workload with a low request rate

because a comprehensive characterization of the production
workload from Azure Functions [15] has shown that 81% of the
applications were invoked at most once per minute on average.
Hence, our baseline workload sends one request per second for
60 minutes to collect up to 3600 invocation samples. This low
request rate also prevents excessive coldstarts or overloading
of any triggering infrastructure.

D. Trace Analysis
The trace analyzer correlates disconnected partial traces (see

Figure 1) and yields a summary of fully correlated traces. For
the synchronous HTTP trigger, the tracing services AWS X-Ray
and Azure Application Insights support auto-correlation, where
the receiver function detects a tracing header from the invoker
function and associates it to the fully connected trace. For
asynchronous triggers (Figure 4), trace token propagation is
not supported for all our implemented trigger types except
for the AWS storage trigger, which implements a custom
trace re-parenting strategy. Therefore, each invocation of an
asynchronous trigger creates two disconnected traces with
distinct trace ids. Our trace analyzer uses the tracing token
explicitly associated with t4 (Section II-A) to match the trace
id of the invoker function with the new trace id of the receiver
function. This correlation process joins the two disconnected
traces by id and enables our analyzer to extract results from
the same request, including relevant timestamps identified in
Section II-A and the coldstart status (i.e., whether a function
experienced a coldstart).

E. Implementation
We implement TriggerBench as a Python library (CLI and

SDK) to automate the entire benchmarking lifecycle by extend-
ing our serverless benchmarking orchestrator ServiBench [20]
(Figure 1). We use the provider-specific Node.js libraries to
instrument the receiver and invoker functions using Application
Insights for Node.js6 and the AWS X-Ray SDK7. All triggers can
be automatically deployed through Infrastructure-as-Code [21]
using Pulumi8 for modular and reproducible deployments.
The open source load testing tool k69 provides reliable and
customizable load generation. Our Python tool is easy to use
because it leverages Docker virtualization to abstract depen-
dencies and automatically injects provider credentials when
needed. ServiBench facilitates the benchmarking lifecycle (as
depicted in Figure 1) through standardized interfaces. However,
TriggerBench is a novel contribution with its detailed cross-
provider measurement methodology, Pulumi-based deployment

6https://www.npmjs.com/package/applicationinsights
7https://www.npmjs.com/package/aws-xray-sdk
8https://www.pulumi.com/
9https://k6.io/

9

Most popular app trigger [Eismann, TSE’21]
Causes 2nd most invocations [Shahrad, ATC’20]
Most popular service [Eismann, TSE’21]

2022-09-28

Results AWS

99th percentile = 2.2 s

*

* Empirical Cumulative Distribution Function
10

2022-09-28

Results AWS vs. Azure

99th percentile = 23 s

11

for the trigger types in Table I, and trace analysis that can
handle disconnected traces.

III. EXPERIMENTAL RESULTS

This section describes the experimental setup and results of
our benchmarking study and summarizes key findings.

A. Setup
We deploy the serverless components (see Section II-A)

in the AWS region us-east-1 and the Azure region eastus as
commonly used by other serverless studies [8, 22, 23, 24, 25].
For load generation, we deploy the benchmark orchestrator
(see Figure 1) in an over-provisioned virtual machine (t3.xlarge
for AWS, B4ms for Azure) within the same datacenter region
as the serverless resources.

B. Results
The empirical cumulative distribution function (ECDF) plot

in Figure 5 visualizes the trigger latency distribution for
three AWS and eight Azure triggers on a logarithmic scale.
The results demonstrate a best-case scenario for sequential
function invocations and workloads with concurrent requests
are expected to increase trigger latency (see threats to external
validity in Section IV-C).

The synchronous HTTP trigger in Azure delivers the lowest
and most stable trigger latency of all studied trigger types with
a median latency of 32ms (annotated and indicated by the
dotted line) and a tail latency of 65ms (99th percentile/p99).
In comparison, the AWS HTTP trigger has higher tail latency
(151ms) but is still clearly the most responsive trigger type
studied in AWS. The Azure timer trigger exhibits a similar
performance profile compared to the HTTP trigger but adds
a few milliseconds more delay. The asynchronous database
trigger in Azure has a surprisingly low median latency of
43ms but deteriorates towards the 95th percentile (86ms) and
exceeds 1.6 s delay in its extremely long tail (p99).

Azure offers four similar services for delivering events
or messages with different performance profiles: streaming,
messaging, queueing, and eventing. Among them, the streaming
trigger has the lowest trigger latency (302ms median) and is
also most stable with manageable tail latency (519ms p99).
The message trigger exhibits a similar performance profile,
just adding more delay (+10%) and tail latency (+54%). In
contrast, the queue trigger is more variable ranging from
205ms (minimum) beyond 1155ms (p99), indicated by the
flat slope of its curve. Although the event trigger has a similar
median (642ms) than the queue trigger (611ms), is more
stable exemplified by its lower tail latency (1026ms).

Storage-based triggers are the worst type of triggers in both
providers. They also suffer from extreme tail latency (p99)
exemplified by their 23 s delay in Azure and 2.2 s delay in
AWS.

The comparison between AWS and Azure shows that Azure
offers the best HTTP trigger but AWS delivers much lower
latency compared to Azure for the queue and storage trigger
by a factor of five.

Figure 5. Trigger latency for three AWS and eight Azure triggers based on
3400–3600 samples per configuration. The results show a best-case scenario
for warm invocations under a low baseline workload. The y-axis is in log-scale.
The labels and vertical dotted lines refer to medians.

Key Findings:
• The synchronous HTTP trigger has the shortest and

most stable latency of all studied trigger types for both
AWS and Azure.

• Storage triggers have the highest latency and introduce
variable multi-second delays.

• All triggers suffer from long tail latency.
• The Azure queue and storage triggers have five times

higher latency than their AWS counterparts.

IV. DISCUSSION

We now discuss our results in the context of interactive
applications and latency-sensitive function coordination.

A. Trigger types for interactive applications
From the studied trigger types, only the synchronous HTTP

trigger is suitable for interactive applications that require
an immediate response. Users perceive an interactive reac-
tion within 100ms as immediate according to long-standing
research on user experience [26, Chapter 5] and the user-
centric performance model RAIL from Google [27]. Hence,
our results for the HTTP trigger show that even tail latency can
satisfy this requirement for Azure (p99) and most AWS users

2022-09-28

More Results for Azure

for the trigger types in Table I, and trace analysis that can
handle disconnected traces.

III. EXPERIMENTAL RESULTS

This section describes the experimental setup and results of
our benchmarking study and summarizes key findings.

A. Setup
We deploy the serverless components (see Section II-A)

in the AWS region us-east-1 and the Azure region eastus as
commonly used by other serverless studies [8, 22, 23, 24, 25].
For load generation, we deploy the benchmark orchestrator
(see Figure 1) in an over-provisioned virtual machine (t3.xlarge
for AWS, B4ms for Azure) within the same datacenter region
as the serverless resources.

B. Results
The empirical cumulative distribution function (ECDF) plot

in Figure 5 visualizes the trigger latency distribution for
three AWS and eight Azure triggers on a logarithmic scale.
The results demonstrate a best-case scenario for sequential
function invocations and workloads with concurrent requests
are expected to increase trigger latency (see threats to external
validity in Section IV-C).

The synchronous HTTP trigger in Azure delivers the lowest
and most stable trigger latency of all studied trigger types with
a median latency of 32ms (annotated and indicated by the
dotted line) and a tail latency of 65ms (99th percentile/p99).
In comparison, the AWS HTTP trigger has higher tail latency
(151ms) but is still clearly the most responsive trigger type
studied in AWS. The Azure timer trigger exhibits a similar
performance profile compared to the HTTP trigger but adds
a few milliseconds more delay. The asynchronous database
trigger in Azure has a surprisingly low median latency of
43ms but deteriorates towards the 95th percentile (86ms) and
exceeds 1.6 s delay in its extremely long tail (p99).

Azure offers four similar services for delivering events
or messages with different performance profiles: streaming,
messaging, queueing, and eventing. Among them, the streaming
trigger has the lowest trigger latency (302ms median) and is
also most stable with manageable tail latency (519ms p99).
The message trigger exhibits a similar performance profile,
just adding more delay (+10%) and tail latency (+54%). In
contrast, the queue trigger is more variable ranging from
205ms (minimum) beyond 1155ms (p99), indicated by the
flat slope of its curve. Although the event trigger has a similar
median (642ms) than the queue trigger (611ms), is more
stable exemplified by its lower tail latency (1026ms).

Storage-based triggers are the worst type of triggers in both
providers. They also suffer from extreme tail latency (p99)
exemplified by their 23 s delay in Azure and 2.2 s delay in
AWS.

The comparison between AWS and Azure shows that Azure
offers the best HTTP trigger but AWS delivers much lower
latency compared to Azure for the queue and storage trigger
by a factor of five.

Figure 5. Trigger latency for three AWS and eight Azure triggers based on
3400–3600 samples per configuration. The results show a best-case scenario
for warm invocations under a low baseline workload. The y-axis is in log-scale.
The labels and vertical dotted lines refer to medians.

Key Findings:
• The synchronous HTTP trigger has the shortest and

most stable latency of all studied trigger types for both
AWS and Azure.

• Storage triggers have the highest latency and introduce
variable multi-second delays.

• All triggers suffer from long tail latency.
• The Azure queue and storage triggers have five times

higher latency than their AWS counterparts.

IV. DISCUSSION

We now discuss our results in the context of interactive
applications and latency-sensitive function coordination.

A. Trigger types for interactive applications
From the studied trigger types, only the synchronous HTTP

trigger is suitable for interactive applications that require
an immediate response. Users perceive an interactive reac-
tion within 100ms as immediate according to long-standing
research on user experience [26, Chapter 5] and the user-
centric performance model RAIL from Google [27]. Hence,
our results for the HTTP trigger show that even tail latency can
satisfy this requirement for Azure (p99) and most AWS users

12

2022-09-28

Summary
• Function triggers suffer from long tail latency
• Synchronous HTTP trigger most suitable for

interactive applications
• Storage triggers introduce multi-second delays

13

2022-09-28

Related Work
• Pelle et al. CLOUD’19

• Different event payload sizes on AWS
• Quinn et al. WoSC’21

• Comparison of four different control flow methods
• Lee et al. WoSC’18

• Median throughput of three triggers across four providers

14

2022-09-28

Conclusions

Joel Scheuner
✉ scheuner@chalmers.se
! " joe4dev
! joelscheuner.comAll artefacts are available

!

!

15

TriggerBench evaluates the
latency of function triggers.

http://joelscheuner.com/

2022-09-28

Threats to Validity
• Construct validity: Limited observability due to

restricted access to serverless environments
• Internal validity: Potentially inaccurate clock

synchronization à check for negative timediffs
• External validity: field experiments are not

generalizable beyond the studied design
• Reliability: strive for technical reproducibility +

replicability of data analysis

16

2022-09-28

Future Work
• Aspects

• Language runtimes (e.g., Python, Java)
• Message payload size
• Bursty workloads

• Longitudinal study
• Extensible: authentication support for other providers

17

Software Performance Matters

[1] B. Forrest. Bing and Google Agree: Slow Pages Lose Users, Online: http://radar.oreilly.com/2009/06/bing-and-google-
agree-slow-pag.html. 2009.
[2] J. Brutlag Speed matters for Google web search, Online: https://ai.googleblog.com/2009/06/speed-matters.html. 2009.
[3] R. Kohavi and R. Longbotham. Online experiments: Lessons learned. Computer, 2007.

+100ms response
time in page load

à -1% sales [3]
[1]

Delay

+200ms delay à -0.29% searches
+400ms delay à -0.59% searches

[1,2]

2022-09-28 18

2022-09-28

What is Serverless Computing?

Function

𝜆
Cloud Event

Triggers

External Service
(database, queue, …)

Store

19

2022-09-28

Serverless Performance Benchmarking

Right model for
my application?

𝜆

How to satisfy
performance

requirements?

Which platform is best
for my application?

20

2022-09-28

Credits
Icons created by:
• Freepik, Becris – Flaticon
• Puckung graphic design factory – Iconfinder
• Documentation by Eucalyp, Graph by Wuppdidu,

serverless by Juicy Fish from Noun Project

21

https://thenounproject.com/browse/icons/term/documentation/

