
©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works. The definitive Version of Record was published in 2022 IEEE International Conference on Cloud Engineering (IC2E), September 28, 2022, Monterey,
California, USA, https://doi.org/10.1109/IC2E55432.2022.00018

TriggerBench: A Performance Benchmark for
Serverless Function Triggers

Joel Scheuner, Marcus Bertilsson, Oskar Grönqvist, Henrik Tao,
Henrik Lagergren, Jan-Philipp Steghöfer, Philipp Leitner

Department of Computer Science and Engineering
Chalmers | University of Gothenburg

Gothenburg, Sweden
scheuner@chalmers.se, marcbert@student.chalmers.se, oskgro@student.chalmers.se, htao@student.chalmers.se,

henlag@student.chalmers.se, jan-philipp.steghofer@cse.gu.se, philipp.leitner@chalmers.se

Abstract—Serverless computing offers a scalable event-based
paradigm for deploying managed cloud-native applications.
Function triggers are essential building blocks in serverless,
as they initiate any function execution. However, function
triggering is insufficiently studied and inherently hard to measure
given the distributed, ephemeral, and asynchronous nature of
event-based function coordination. To address this gap, we
present TriggerBench, a cross-provider benchmark for evaluating
serverless function triggers based on distributed tracing. We
evaluate the trigger latency (i.e., time to transition between two
functions) of eight types of triggers in Microsoft Azure and three
in AWS. Our results show that all triggers suffer from long tail
latency, storage triggers introduce variable multi-second delays,
and HTTP triggers are most suitable for interactive applications.
Our insights can guide developers in choosing optimal event or
messaging triggers for latency-sensitive applications. Researchers
can extend TriggerBench to study the latency, scalability, and
reliability of further trigger types and cloud providers.

Index Terms—serverless, FaaS, triggers, distributed tracing,
observability, performance, benchmarking

I. INTRODUCTION

Serverless computing emerged as a promising cloud comput-
ing paradigm and experiences strong interest in industry and
academia. It aims to liberate users from operational concerns
such as managing or scaling server infrastructure, by offering
a high-level service with fine-grained billing [1, 2].

One important decision criterion for developers choosing a
specific cloud provider is performance. Prior work has reported
many performance challenges for serverless platforms [3, 4,
5, 6] such as coldstarts [7, 8, 9, 10], low tail latency [9], and
branch mispredictions in short-lived functions [11]. However,
little work has studied the performance of event-based function
triggers [5], although they are a core building block of practical
serverless applications [12]. A study comparing serverless
control flow methods [13] raised performance challenges for
event-based triggers. Similarly, Pelle et al. [14] reported varying
invocation delays in AWS depending on the message payload
size. However, these results are limited to a single provider
and difficult to reproduce.

Understanding function triggers as the communication primi-
tives for building serverless applications across cloud providers
requires fine-grained tracing to address gaps in current research.
Micro-benchmarks measure individual aspects of serverless

platforms, such as the CPU speed or platform overhead of a
simple Function-as-a-Service (FaaS) function, and are prevalent
in prior work [5, 6]. However, they do not capture the end-to-
end latency characteristics of multiple functions coordinated
through event-based serverless triggering mechanisms. Prior
work typically reports the response time of a synchronous
HTTP request served by a serverless function, but event-based
serverless architectures often use asynchronous triggers to
orchestrate complex workflows [13, 12, 15, 16]. Therefore, fine-
grained asynchronous tracing is required to identify bottlenecks
and capture the event-based execution of serverless function
coordination.

In this paper, we propose an initial cross-provider benchmark
for evaluating serverless function triggers called TriggerBench
and demonstrate its utility through experimentation in two
leading cloud providers (Microsoft Azure and AWS). We
adopt distributed tracing to collect and correlate performance
traces for synchronous and asynchronous function triggers.
Our methodology (Section II) can serve as a reference for
researchers and practitioners to evaluate function triggers as
foundational communication primitives of modern serverless
applications. Our experimental results (Section III) for two
leading cloud providers show that the Azure HTTP trigger
delivers the lowest and most stable trigger latency. However,
queue and storage triggers in Azure add five times more delay
than their AWS counterparts. We identify triggers that suffer
from extreme long tail latency and derive insights that can
guide developers in choosing between four similar trigger
types, namely streams, messages, events, and queues. Finally,
we discuss our contributions (Section IV), relate them to prior
research (Section V), and outline challenges for future work
(Section VI). We release the TriggerBench1 benchmarking
software, data, and results as a replication package [17] to
foster future research.

II. TRIGGERBENCH

Figure 1 shows the high-level architecture of our benchmark-
ing approach for trigger latency. The figure visualizes the main
interactions between the two main components benchmark

1https://github.com/joe4dev/trigger-bench

https://doi.org/10.1109/IC2E55432.2022.00018
mailto:scheuner@chalmers.se
mailto:marcbert@student.chalmers.se
mailto:oskgro@student.chalmers.se
mailto:htao@student.chalmers.se
mailto:henlag@student.chalmers.se
mailto:jan-philipp.steghofer@cse.gu.se
mailto:philipp.leitner@chalmers.se
https://github.com/joe4dev/trigger-bench


Tracing Service

Function Code 
+ Deployment Script

Cloud ProviderBenchmark Orchestrator

Workload Profile

① Deploy

② Invoke

Partial Traces ③ Retrieve

Invoker 
Function

Correlated Traces
④ Analyze

Trace Points

External
Service

Receiver 
Function

Figure 1. High-level overview of benchmarking approach.

orchestrator and cloud provider. First 1 , an invoker- and
receiver-function as well as an external service connecting
these two functions (Section II-A) are deployed into a cloud
provider using an automated deployment script. The invoker
function calls the external service, which is configured to
trigger the receiver function through different trigger types
(Section II-B). All cloud resources are instrumented with
detailed trace points (Section II-A) and forward trace spans
to a provider-specific tracing service such as AWS X-Ray2 or
Azure Application Insights3. Second 2 , a workload profile
(Section II-C) is applied to invoke the invoker function through
an HTTP gateway. Third 3 , the benchmark orchestrator
retrieves partial traces from the tracing service and 4 analyzes
them by correlating disconnected traces and extracting relevant
timestamps (Section II-D). This correlated trace dataset is then
available for further performance analysis (e.g., Section III).

A. Measurement Methodology

This section describes the measurement methodology for
synchronous and asynchronous function triggers. In both cases,
we define trigger latency as the time difference between t1 and
t4, where t1 denotes the last line of user code before starting
the service call in the invoker function, and t4 denotes the first
line of user code in the receiver function.

Invoker 
Function

t1

t2

t4

External
Service

Receiver 
Function

t3
Initialize 
Runtime

Invocationt4

Service call

Returning call

Function trigger

Tr
ig

ge
r L

at
en

cy

Returning call

Figure 2. Trigger latency ∆(t1, t4) for synchronous function trigger.

2https://aws.amazon.com/xray/
3https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-

overview

The sequence diagram in Figure 2 visualizes synchronous
function triggering where the invoker function and the external
service remain active during the entire invocation of the
receiver function. After t1, the invoker function initiates a
service call to an external service (e.g., API gateway), which
triggers the receiver function within the cloud-provider internal
infrastructure. The invoker function needs to attach a tracing
token to the outgoing service call, typically in the form of
an HTTP tracing header. Figure 3 shows examples of tracing
headers for AWS X-Ray4 and the W3C standard used by Azure
called Trace Context5. Most importantly, these headers contain
a trace id to correlate trace points of the same request from
the invoker- and receiver-function (Figure 1). The parent id
helps to generically identify the source of the service call by
linking to the trace point initiating the service call.

Root=1-5759e988-bd862e3fe1be46a994272793;Parent=53995c3f42cd8ad8;Sampled=1

traceparent: 00-0af7651916cd43dd8448eb211c80319c-b7ad6b7169203331-01

Trace Id Parent Id

AWS X-Ray Tracing Header

W3C Trace Context Header (used by Azure)

Figure 3. Examples of HTTP tracing headers for trace context propagation.

At t3, the function infrastructure (e.g., Firecracker [18] for
AWS) receives the function execution request and starts to
initialize the function runtime (e.g., Node.js). This initialization
overhead can be substantial for coldstarts [7, 8, 9, 10], but
is reduced for repeated invocations if the function is kept
in memory. Subsequently, the function invocation starts by
executing the user code in the receiver function at t4. Once the
function completes, the control flow returns via the external
service back to the invoker function ending the service call in
t2.

Invoker 
Function

t1

t2

t4

External
Service

Receiver 
Function

t3
Initialize 
Runtime

Invocationt4

Service call

Returning call
Function trigger

Tr
ig

ge
r L

at
en

cy

Figure 4. Trigger latency ∆(t1, t4) for asynchronous function trigger.

Figure 4 shows asynchronous function triggering where
the invoker function potentially terminates before the external
service triggers the receiver function. The service call imme-
diately returns to the invoker function after completion (e.g.,
uploaded file to object storage). In the meantime, the external

4https://docs.aws.amazon.com/xray/latest/devguide/xray-concepts.html#
xray-concepts-tracingheader

5https://www.w3.org/TR/trace-context/#trace-context-http-headers-format

https://aws.amazon.com/xray/
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.aws.amazon.com/xray/latest/devguide/xray-concepts.html#xray-concepts-tracingheader
https://docs.aws.amazon.com/xray/latest/devguide/xray-concepts.html#xray-concepts-tracingheader
https://www.w3.org/TR/trace-context/#trace-context-http-headers-format


service asynchronously triggers the receiver function at t3 and
additional queueing time might occur before proceeding with
initialization. Asynchronous triggers typically do not propagate
a tracing header. Hence, the receiver function creates a new
trace id that differs from the invoker function, essentially
breaking the trace into two partial/disconnected traces. To
mitigate this issue, we explicitly attach a tracing token to the
metadata or payload of the service call. At t4, we extract this
tracing token and send it to the tracing service together with
the new trace id of the receiver function. This custom trace
propagation enables our trace analysis to correlate such partial
traces (Section II-D). Finally, the function terminates without
returning to any caller, which makes observability hard without
distributed tracing.

B. Trigger Types

Table I summarizes eight common serverless trigger types
used in this study. The most popular trigger type in serverless
is the HTTP trigger according to an application characterization
study [12] and comprehensive analysis of the Azure production
workload [15]. This trigger reacts to an invocation of an HTTP
endpoint via a corresponding HTTP request and is inherently
synchronous (all other trigger types are asynchronous). In Azure
Functions, the queue trigger causes the second-most invocations
(33.5%) and is used by 15.2% of the functions [15]. Queues
are first-in, first-out and trigger a function whenever a new
message is received, thus enabling independent, asynchronous
processing of items involving considerable workload. The
cloud object storage trigger is important given that cloud
storage is the most popular external service used by serverless
applications [12]. The storage can trigger subscribed functions,
e.g., when a new item is created or an existing item is modified.

Table I
TRIGGER TYPES AND SERVICE MAPPINGS FOR AWS AND AZURE

Trigger AWS Service Azure Service

HTTP API Gateway API Management
Queue SQS Queue Storage
Storage S3 Blob Storage
Database DynamoDB∗ CosmosDB
Event SNS∗ Event Grid
Stream Kinesis∗ Event Hubs
Message EventBridge∗ Service Bus Topic
Timer CloudWatch Events∗ Timer
∗ Not implemented

We implement these three important triggers for the two
leading cloud providers AWS and Azure [12] and an additional
five triggers for Azure. Database triggers react to events
in a database such as insertion, deletion, or update. Event
triggers notify lightweight state changes. Their discrete event
distribution capabilities are typically used for reactive program-
ming [19]. Stream triggers are useful for big data pipelines
when events arrive in series, the ingestion rate of events is very
high (e.g., millions per second), and low latency is desirable.
Message triggers deliver data payloads reliably to subscribed
consumers and often come with advanced messaging features

such as routing and filtering [19]. Finally, timer triggers are
used for scheduled function executions, either at a certain
interval or at certain times of the day.

C. Workload Profile

We choose a baseline workload with a low request rate
because a comprehensive characterization of the production
workload from Azure Functions [15] has shown that 81% of the
applications were invoked at most once per minute on average.
Hence, our baseline workload sends one request per second for
60 minutes to collect up to 3600 invocation samples. This low
request rate also prevents excessive coldstarts or overloading
of any triggering infrastructure.

D. Trace Analysis

The trace analyzer correlates disconnected partial traces (see
Figure 1) and yields a summary of fully correlated traces. For
the synchronous HTTP trigger, the tracing services AWS X-Ray
and Azure Application Insights support auto-correlation, where
the receiver function detects a tracing header from the invoker
function and associates it to the fully connected trace. For
asynchronous triggers (Figure 4), trace token propagation is
not supported for all our implemented trigger types except
for the AWS storage trigger, which implements a custom
trace re-parenting strategy. Therefore, each invocation of an
asynchronous trigger creates two disconnected traces with
distinct trace ids. Our trace analyzer uses the tracing token
explicitly associated with t4 (Section II-A) to match the trace
id of the invoker function with the new trace id of the receiver
function. This correlation process joins the two disconnected
traces by id and enables our analyzer to extract results from
the same request, including relevant timestamps identified in
Section II-A and the coldstart status (i.e., whether a function
experienced a coldstart).

E. Implementation

We implement TriggerBench as a Python library (CLI and
SDK) to automate the entire benchmarking lifecycle by extend-
ing our serverless benchmarking orchestrator ServiBench [20]
(Figure 1). We use the provider-specific Node.js libraries to
instrument the receiver and invoker functions using Application
Insights for Node.js6 and the AWS X-Ray SDK7. All triggers can
be automatically deployed through Infrastructure-as-Code [21]
using Pulumi8 for modular and reproducible deployments.
The open source load testing tool k69 provides reliable and
customizable load generation. Our Python tool is easy to use
because it leverages Docker virtualization to abstract depen-
dencies and automatically injects provider credentials when
needed. ServiBench facilitates the benchmarking lifecycle (as
depicted in Figure 1) through standardized interfaces. However,
TriggerBench is a novel contribution with its detailed cross-
provider measurement methodology, Pulumi-based deployment

6https://www.npmjs.com/package/applicationinsights
7https://www.npmjs.com/package/aws-xray-sdk
8https://www.pulumi.com/
9https://k6.io/

https://aws.amazon.com/api-gateway/
https://azure.microsoft.com/en-us/services/api-management
https://aws.amazon.com/sqs/
https://azure.microsoft.com/en-us/services/storage/queues/
https://aws.amazon.com/s3/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://aws.amazon.com/dynamodb/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://aws.amazon.com/sns
https://azure.microsoft.com/en-us/services/event-grid
https://aws.amazon.com/kinesis/
https://azure.microsoft.com/en-us/services/event-hubs/
https://aws.amazon.com/eventbridge/
https://azure.microsoft.com/en-us/services/service-bus
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/RunLambdaSchedule.html
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://www.npmjs.com/package/applicationinsights
https://www.npmjs.com/package/aws-xray-sdk
https://www.pulumi.com/
https://k6.io/


for the trigger types in Table I, and trace analysis that can
handle disconnected traces.

III. EXPERIMENTAL RESULTS

This section describes the experimental setup and results of
our benchmarking study and summarizes key findings.

A. Setup

We deploy the serverless components (see Section II-A)
in the AWS region us-east-1 and the Azure region eastus as
commonly used by other serverless studies [8, 22, 23, 24, 25].
For load generation, we deploy the benchmark orchestrator
(see Figure 1) in an over-provisioned virtual machine (t3.xlarge
for AWS, B4ms for Azure) within the same datacenter region
as the serverless resources.

B. Results

The empirical cumulative distribution function (ECDF) plot
in Figure 5 visualizes the trigger latency distribution for
three AWS and eight Azure triggers on a logarithmic scale.
The results demonstrate a best-case scenario for sequential
function invocations and workloads with concurrent requests
are expected to increase trigger latency (see threats to external
validity in Section IV-C).

The synchronous HTTP trigger in Azure delivers the lowest
and most stable trigger latency of all studied trigger types with
a median latency of 32ms (annotated and indicated by the
dotted line) and a tail latency of 65ms (99th percentile/p99).
In comparison, the AWS HTTP trigger has higher tail latency
(151ms) but is still clearly the most responsive trigger type
studied in AWS. The Azure timer trigger exhibits a similar
performance profile compared to the HTTP trigger but adds
a few milliseconds more delay. The asynchronous database
trigger in Azure has a surprisingly low median latency of
43ms but deteriorates towards the 95th percentile (86ms) and
exceeds 1.6 s delay in its extremely long tail (p99).

Azure offers four similar services for delivering events
or messages with different performance profiles: streaming,
messaging, queueing, and eventing. Among them, the streaming
trigger has the lowest trigger latency (302ms median) and is
also most stable with manageable tail latency (519ms p99).
The message trigger exhibits a similar performance profile,
just adding more delay (+10%) and tail latency (+54%). In
contrast, the queue trigger is more variable ranging from
205ms (minimum) beyond 1155ms (p99), indicated by the
flat slope of its curve. Although the event trigger has a similar
median (642ms) than the queue trigger (611ms), is more
stable exemplified by its lower tail latency (1026ms).

Storage-based triggers are the worst type of triggers in both
providers. They also suffer from extreme tail latency (p99)
exemplified by their 23 s delay in Azure and 2.2 s delay in
AWS.

The comparison between AWS and Azure shows that Azure
offers the best HTTP trigger but AWS delivers much lower
latency compared to Azure for the queue and storage trigger
by a factor of five.

0

0.25

0.50

0.75

1

Em
pi

ric
al

 C
um

ul
at

iv
e 

Di
st

rib
ut

io
n 

Fu
nc

tio
n 

(E
CD

F)

41 111 1345

AWS

Trigger Type
HTTP
Timer

Queue
Database

Storage
Stream

Message
Event

0

0.25

0.50

0.75

1

32 334
611 6616

Azure (i)

10 100 1000 10000
Trigger Latency (ms)

0

0.25

0.50

0.75

1

43 642302

36

Azure (ii)

Figure 5. Trigger latency for three AWS and eight Azure triggers based on
3400–3600 samples per configuration. The results show a best-case scenario
for warm invocations under a low baseline workload. The y-axis is in log-scale.
The labels and vertical dotted lines refer to medians.

Key Findings:
• The synchronous HTTP trigger has the shortest and

most stable latency of all studied trigger types for both
AWS and Azure.

• Storage triggers have the highest latency and introduce
variable multi-second delays.

• All triggers suffer from long tail latency.
• The Azure queue and storage triggers have five times

higher latency than their AWS counterparts.

IV. DISCUSSION

We now discuss our results in the context of interactive
applications and latency-sensitive function coordination.

A. Trigger types for interactive applications

From the studied trigger types, only the synchronous HTTP
trigger is suitable for interactive applications that require
an immediate response. Users perceive an interactive reac-
tion within 100ms as immediate according to long-standing
research on user experience [26, Chapter 5] and the user-
centric performance model RAIL from Google [27]. Hence,
our results for the HTTP trigger show that even tail latency can
satisfy this requirement for Azure (p99) and most AWS users



(p96), which makes sense because latency is most important
for synchronous triggers. However, our results demonstrate
a best-case scenario and substantial delay could be added
by other factors such as coldstarts [7, 8, 9, 10] and bursty
workloads [9]. The Azure database trigger has almost the same
median latency as the AWS HTTP trigger but is hardly suitable
for interactive scenarios because enabling user interaction
following an asynchronous trigger adds further delay. An
additional concern for some applications might be its extreme
tail latency (1614ms p99). We disregard the asynchronous
timer trigger because it is typically not used in latency-sensitive
applications. Instead, the primary use case for this type of
trigger is in scheduling periodic background tasks, which are
not sensitive to delays.

Many trigger types could be suitable for interactive ap-
plications where users are freely navigating and can cope
with task delays between 100ms and 1000ms [26, 27], for
example loading a new web page. As counter-examples, storage
triggering is clearly unsuitable for interactive applications
and the Azure trigger types database, event, and queue are
problematic due to their tail latencies.

For delays beyond 10 s, users are unwilling to wait and are
likely to abandon a task [26, 27], such as waiting for an image
to process. The AWS storage trigger is suitable for such a
common task, but using an Azure storage trigger would likely
lead to frustrated users due to excessive tail latency (23 s p99).

B. Latency-sensitive function coordination

From the studied trigger types, the stream trigger for
Azure and queue trigger for AWS are most suitable for
connecting multiple functions asynchronously and efficiently.
Asynchronous function coordination is essential in serverless be-
cause synchronous function chaining causes double-billing [28]
and is subject to tight execution time limits (e.g., 30 s for AWS
HTTP trigger). In Azure, the stream trigger offers the lowest
latency for reliable and consistent function triggering. However,
302ms median latency is rather high for low-latency stream
processing and even the AWS queue trigger has 2.7× lower
latency. It might be worthwhile to explore the database trigger
for latency-critical applications where extreme tail latency is
acceptable. In AWS, better triggering performance than the
queue trigger could possibly be achieved with other trigger
types beyond the scope of this study, for example through
direct invocation using a CLI or SDK.

C. Threats to Validity

This section discusses four common threats to validity [29],
namely construct validity, internal validity, external validity,
and reliability.

1) Construct Validity: The main threat to construct validity
is limited observability due to restricted access to serverless
environments, which impedes instrumentation. Our definition
of trigger latency (Section II-A) includes function runtime
initialization during coldstarts and service call initiation because
provider-specific timestamps were unreliable for fair cross-
provider comparison. For the provider-internal timestamp t3,

we cannot validate the exact timing of the instrumentation to
ensure a fair comparison. Additionally, we discovered frequent
negative time differences between t3 and t4 in Azure, which
indicates unreliable measurements from the internal data source
for t3, even after adjusting for different timestamp precision
formats. For asynchronous triggers, function triggering does
not always happen after the service call returns, which makes
t2 in Figure 4 unreliable.

2) Internal Validity: Inaccurate clock synchronization poses
the main threat to internal validity. FaaS platforms are dis-
tributed systems, which makes accurate clock synchroniza-
tion challenging [30]. Cloud providers mitigate this issue
by synchronizing their server fleet with their own stratum
1 NTP servers based on satellite-connected atomic clocks,
as documented for AWS [31] and Azure [32]. In our data
analysis, we check for negative time differences and found
no measurement issues for our definition of trigger latency as
described in Section II-A. To ensure accurate load generation,
we validate invocation logs and monitor the resources of the
virtual machine.

3) External Validity: The results of field experiments are not
generalizable beyond the studied design [33] but future work
can cover additional configurations. Our results demonstrate a
best-case scenario for warm invocations under a low baseline
workload. Several factors are expected to increase trigger
latency. Larger trigger message payloads increase latency as
shown by Pelle et al. [14]. Bursty workloads with many
concurrent requests are also expected to increase latency similar
to prior work for serverless functions [9], but the behavior
presumably differs depending on the trigger type. TriggerBench
supports different workload profiles such as concurrent bursts
and is easily extensible to study other trigger types as described
in Section VI.

4) Reliability: We strive for technical reproducibility [34]
of our cloud experiment and replicability [35] of our data
analysis. Technical reproducibility enables the execution of
the same methodology to obtain a new dataset that reflects
potential changes to the cloud environment. We provide a fully
automated experiment plan for simple and reliable re-execution
of our methodology. We account for performance variability
by collecting 3600 samples for the same configuration (anal-
ogous to Stellar [9]) distributed over 1 hour under low load.
Independently from new experiments, our data analysis can be
replicated by other researchers using our documented dataset
published as part of our replication package [17].

V. RELATED WORK

This work complements a large body of work in the very
active field of serverless performance benchmarking [5, 6, 36,
37] by addressing the research gap of cross-provider trigger
benchmarking [5].

Closest to this work, Pelle et al. [14] study invocation
delays of containers and serverless functions for different
event payload sizes in AWS Lambda and evaluate a latency-
sensitive drone application. In comparison, our work covers
two leading providers rather than solely AWS, contributes



a reusable, reproducible, and extensible benchmark rather
than merely reporting results, and characterizes the full
empirical distribution based on 34× more samples published
in a documented replication package rather than mean and
standard deviation from 100 samples per configuration. We
also demonstrate and implement more detailed tracing using
trace token propagation and generalizable trace correlation to
mitigate the limitations of existing tracing systems, especially
for asynchronous triggers causing disconnected traces.

Quinn et al. [13] indirectly measure trigger performance
in their study about alternative control flow methods in
serverless. They report the average latency of an application
in different control flow architectures but do not isolate trigger
latency, probably using three (partly unspecified) triggers. In
an evaluation of serverless production platforms, Lee et al.
[38] study the median throughput of three trigger types (HTTP,
storage, database) across four providers (not all triggers are
available for all providers). Our work focuses on latency rather
than throughput, which requires a more elaborate measurement
methodology and is harder to achieve in current performance
trends [39].

VI. CONCLUSION

In this paper, we designed and implemented TriggerBench,
a cross-provider benchmark for evaluating serverless function
triggers, which are essential communication primitives for
building serverless applications. We demonstrate the utility of
TriggerBench in a benchmarking study covering eight triggers
on Azure and three triggers on AWS. Our results show that
all triggers suffer from long tail latency, synchronous HTTP
triggers are most suitable for interactive applications, and
storage triggers introduce variable multi-second delays. In
conclusion, our study highlights the importance of trigger
benchmarking to guide developers in choosing between similar
event-based triggers (e.g., stream, message, event, and queue)
when building latency-sensitive applications. We discuss that
many triggers are currently unsuitable for building interactive
serverless applications and asynchronous triggers with lower
and less variable trigger latency are needed for efficient function
coordination.

Future work can use TriggerBench to study relevant aspects
related to function triggering. Different runtimes (e.g., Node.js,
Java, Python) affect the initialization overhead included in
the trigger latency as defined in Section II-A. The detailed
tracing of TriggerBench could help to quantify this overhead
using t3 and study coldstarts in more detail than prior work.
Similar to Pelle et al. [14], the effect of event payloads could
be studied, potentially isolating transfer times by leveraging t2
(Figure 4). Ustiugov et al. [9] indicated that bursty workloads
affect function performance and TriggerBench could be used to
study bursts of concurrent requests for different trigger types.
Finally, a longitudinal study would be interesting to monitor
performance fluctuations over time (e.g., peaks at certain times
of the day or week [40]).

We contribute this initial version of TriggerBench to the
research community as an enabler for future studies covering

more providers, trigger types, and experiment designs. Our
tool already supports basic authentication for other providers
and our existing implementations for trace downloading and
analysis can guide provider extensions. Our plugin-based
architecture makes it easy to add additional trigger types
without code changes in the benchmark orchestrator (Figure 1).
This enables testing other trigger types for invoking functions
programmatically through an SDK, orchestrated through a
state machine (e.g., AWS StepFunction10 or Azure Durable
Functions11), and directly through function URLs in AWS
as recently announced12. Similarly, our SDK can orchestrate
complex experiment scenarios (e.g., periodic re-deployments),
and workload profiles are supported through flexible and
advanced k6 scenarios13.

ACKNOWLEDGMENT

We are grateful to the SPEC-RG Cloud research group
for insightful discussions and contributions to the benchmark
orchestration tool. This work was partially supported by the
Wallenberg AI, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foundation.

REFERENCES

[1] E. van Eyk, A. Iosup, S. Seif, and M. Thömmes, “The
SPEC Cloud group’s research vision on FaaS and server-
less architectures,” in Proceedings of the 2nd International
Workshop on Serverless Computing (WOSC). ACM, 2017,
pp. 1–4.

[2] P. C. Castro, V. Ishakian, V. Muthusamy, and A. Slominski,
“The rise of serverless computing,” Communications of
the ACM, vol. 62, no. 12, pp. 44–54, Nov. 2019.

[3] H. B. Hassan, S. A. Barakat, and Q. I. Sarhan, “Survey
on serverless computing,” Journal of Cloud Computing,
vol. 10, no. 1, p. 39, 2021.

[4] J. Wen, Z. Chen, Y. Liu, Y. Lou, Y. Ma, G. Huang, X. Jin,
and X. Liu, “An empirical study on challenges of applica-
tion development in serverless computing,” in 29th ACM
Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering
(ESEC/FSE). ACM, 2021, pp. 416–428.

[5] J. Scheuner and P. Leitner, “Function-as-a-service perfor-
mance evaluation: A multivocal literature review,” Journal
of Systems and Software (JSS), vol. 170, 2020.

[6] A. Raza, I. Matta, N. Akhtar, V. Kalavri, and V. Isahagian,
“Sok: Function-as-a-service: From an application devel-
oper’s perspective,” Journal of Systems Research (JSys),
vol. 1, no. 1, 2021.

[7] J. Manner, M. Endreß, T. Heckel, and G. Wirtz, “Cold start
influencing factors in function as a service,” in Companion
of the 11th IEEE/ACM UCC: 4th International Workshop
on Serverless Computing (WoSC), Dec. 2018, pp. 181–88.

10https://aws.amazon.com/step-functions/
11https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-

functions-overview
12https://aws.amazon.com/blogs/aws/announcing-aws-lambda-function-

urls-built-in-https-endpoints-for-single-function-microservices/
13https://k6.io/docs/using-k6/scenarios/

https://aws.amazon.com/step-functions/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://aws.amazon.com/blogs/aws/announcing-aws-lambda-function-urls-built-in-https-endpoints-for-single-function-microservices/
https://aws.amazon.com/blogs/aws/announcing-aws-lambda-function-urls-built-in-https-endpoints-for-single-function-microservices/
https://k6.io/docs/using-k6/scenarios/


[8] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift,
“Peeking behind the curtains of serverless platforms,” in
Proceedings of the USENIX Annual Technical Conference
(ATC). USENIX, Jul. 2018, pp. 133–146.

[9] D. Ustiugov, T. Amariucai, and B. Grot, “Analyzing
tail latency in serverless clouds with stellar,” in IEEE
International Symposium on Workload Characterization
(IISWC), Sep. 2021, pp. 51–62.

[10] P. Maissen, P. Felber, P. G. Kropf, and V. Schiavoni,
“Faasdom: a benchmark suite for serverless computing,”
in Proceedings of the 14th ACM International Conference
on Distributed and Event-based Systems (DEBS). ACM,
2020, pp. 73–84.

[11] M. Shahrad, J. Balkind, and D. Wentzlaff, “Architectural
implications of function-as-a-service computing,” in Pro-
ceedings of the 52nd IEEE/ACM International Symposium
on Microarchitecture (MICRO). ACM, 2019, pp. 1063–
1075.

[12] S. Eismann, J. Scheuner, E. van Eyk, M. Schwinger,
J. Grohmann, N. Herbst, C. L. Abad, and A. Iosup, “The
state of serverless applications: Collection, characteriza-
tion, and community consensus,” IEEE Transactions on
Software Engineering (TSE), 2021.

[13] S. Quinn, R. Cordingly, and W. Lloyd, “Implications of
alternative serverless application control flow methods,”
in Proceedings of the Seventh International Workshop on
Serverless Computing (WoSC). ACM, 2021, pp. 17–22.

[14] I. Pelle, J. Czentye, J. Dóka, and B. Sonkoly, “Towards
latency sensitive cloud native applications: A performance
study on AWS,” in Proceedings of the 12th IEEE
International Conference on Cloud Computing (CLOUD).
IEEE, Jul. 2019, pp. 272–280.

[15] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum,
J. Cooke, E. Laureano, C. Tresness, M. Russinovich,
and R. Bianchini, “Serverless in the wild: Characterizing
and optimizing the serverless workload at a large cloud
provider,” in USENIX Annual Technical Conference (ATC).
USENIX, 2020, pp. 205–218.

[16] P. G. López, A. Arjona, J. Sampé, A. Slominski, and
L. Villard, “Triggerflow: trigger-based orchestration of
serverless workflows,” in The 14th ACM International
Conference on Distributed and Event-based Systems
(DEBS). ACM, 2020, pp. 3–14.

[17] J. Scheuner, M. Bertilsson, O. Grönqvist, H. Tao, H. Lager-
gren, J.-P. Steghöfer, and P. Leitner, “Replication package
for "TriggerBench: A performance benchmark for server-
less function triggers",” Jul. 2022.

[18] A. Agache, M. Brooker, A. Iordache, A. Liguori,
R. Neugebauer, P. Piwonka, and D. Popa, “Firecracker:
Lightweight virtualization for serverless applications,” in
17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI). USENIX, 2020, pp. 419–
434.

[19] “Choose between azure messaging services - event
grid, event hubs, and service bus,” Microsoft Azure,
2022. [Online]. Available: https://docs.microsoft.com/en-

us/azure/event-grid/compare-messaging-services
[20] J. Scheuner, S. Eismann, S. Talluri, E. van Eyk, C. Abad,

P. Leitner, and A. Iosup, “Let’s trace it: Fine-grained
serverless benchmarking using synchronous and asyn-
chronous orchestrated applications,” https://arxiv.org/abs/
2205.07696, 2022.

[21] M. Hüttermann, Infrastructure as Code, ser. DevOps for
Developers. Apress, 2012.

[22] R. Cordingly, H. Yu, V. Hoang, D. Perez, D. Foster,
Z. Sadeghi, R. Hatchett, and W. J. Lloyd, “Implications
of programming language selection for serverless data
processing pipelines,” in IEEE International Conference
on Cloud and Big Data (CBDCom). IEEE, 2020, pp.
704–711.

[23] M. Copik, G. Kwasniewski, M. Besta, M. Podstawski,
and T. Hoefler, “Sebs: a serverless benchmark suite for
function-as-a-service computing,” in Proceedings of the
22nd International Middleware Conference. ACM, 2021,
pp. 64–78.

[24] D. Barcelona-Pons and P. García-López, “Benchmarking
parallelism in faas platforms,” Future Generation Com-
puter Systems, vol. 124, pp. 268–284, 2021.

[25] J. Wen, Y. Liu, Z. Chen, J. Chen, and Y. Ma, “Characteriz-
ing commodity serverless computing platforms,” Journal
of Software: Evolution and Process, 2021.

[26] J. Nielsen, Usability engineering. Morgan Kaufmann,
1994.

[27] “Measure performance with the rail model,”
Google, 2015, accessed April 2022. [Online].
Available: https://www.smashingmagazine.com/2015/10/
rail-user-centric-model-performance/

[28] I. Baldini, P. Cheng, S. J. Fink, N. Mitchell, V. Muthusamy,
R. Rabbah, P. Suter, and O. Tardieu, “The serverless
trilemma: Function composition for serverless computing,”
in Proceedings of the ACM SIGPLAN International Sym-
posium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Onward!). ACM, 2017,
pp. 89–103.

[29] S. Easterbrook, J. Singer, M. D. Storey, and D. E. Damian,
“Selecting empirical methods for software engineering
research,” in Guide to Advanced Empirical Software
Engineering. Springer, 2008, pp. 285–311.

[30] A. Najafi, A. Tai, and M. Wei, “Systems research is
running out of time,” in Workshop on Hot Topics in
Operating Systems (HotOS ’21), 2021, pp. 65–71.

[31] S. Bhatia, “Manage amazon ec2 instance clock
accuracy using amazon time sync service and
amazon cloudwatch,” AWS, 2021. [Online]. Available:
https://aws.amazon.com/blogs/mt/manage-amazon-
ec2-instance-clock-accuracy-using-amazon-time-sync-
service-and-amazon-cloudwatch-part-1/

[32] “Time sync for windows vms in azure,” Microsoft Azure,
2022. [Online]. Available: https://docs.microsoft.com/en-
us/azure/virtual-machines/windows/time-sync

[33] K.-J. Stol and B. Fitzgerald, “The ABC of software
engineering research,” ACM Transactions on Software

https://docs.microsoft.com/en-us/azure/event-grid/compare-messaging-services
https://docs.microsoft.com/en-us/azure/event-grid/compare-messaging-services
https://arxiv.org/abs/2205.07696
https://arxiv.org/abs/2205.07696
https://www.smashingmagazine.com/2015/10/rail-user-centric-model-performance/
https://www.smashingmagazine.com/2015/10/rail-user-centric-model-performance/
https://aws.amazon.com/blogs/mt/manage-amazon-ec2-instance-clock-accuracy-using-amazon-time-sync-service-and-amazon-cloudwatch-part-1/
https://aws.amazon.com/blogs/mt/manage-amazon-ec2-instance-clock-accuracy-using-amazon-time-sync-service-and-amazon-cloudwatch-part-1/
https://aws.amazon.com/blogs/mt/manage-amazon-ec2-instance-clock-accuracy-using-amazon-time-sync-service-and-amazon-cloudwatch-part-1/
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/time-sync
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/time-sync


Engineering and Methodology, vol. 27, no. 3, pp. 1–51,
Sep. 2018.

[34] A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst,
J. von Kistowski, A. Ali-Eldin, C. L. Abad, J. N. Amaral,
P. Tuma, and A. Iosup, “Methodological principles for
reproducible performance evaluation in cloud comput-
ing,” IEEE Transactions on Software Engineering (TSE),
vol. 47, no. 8, pp. 93–94, 2019.

[35] F. C. Y. Benureau and N. P. Rougier, “Re-run, repeat,
reproduce, reuse, replicate: Transforming code into scien-
tific contributions,” Frontiers in Neuroinformatics, vol. 11,
p. 69, 2018.

[36] V. Yussupov, U. Breitenbücher, F. Leymann, and
M. Wurster, “A systematic mapping study on engineering
function-as-a-service platforms and tools,” in Proceedings
of the 12th IEEE/ACM International Conference on Utility
and Cloud Computing (UCC). ACM, 2019, pp. 229–240.

[37] J. Spillner and M. Al-Ameen, “Serverless literature
dataset,” https://doi.org/10.5281/zenodo.2649001, Apr.
2019.

[38] H. Lee, K. Satyam, and G. C. Fox, “Evaluation of produc-
tion serverless computing environments,” in Proceedings
of the 11th IEEE CLOUD: 3rd International Workshop
on Serverless Computing (WoSC), Jul. 2018, pp. 442–50.

[39] D. A. Patterson, “Latency lags bandwith,” Communication
of the ACM, vol. 47, no. 10, pp. 71–75, 2004.

[40] P. Leitner and J. Cito, “Patterns in the chaos – a study
of performance variation and predictability in public
IaaS clouds,” ACM Transactions on Internet Technology,
vol. 16, no. 3, pp. 1–23, Apr. 2016.

https://doi.org/10.5281/zenodo.2649001

	Introduction
	TriggerBench
	Measurement Methodology
	Trigger Types
	Workload Profile
	Trace Analysis
	Implementation

	Experimental Results
	Setup
	Results

	Discussion
	Trigger types for interactive applications
	Latency-sensitive function coordination
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability


	Related Work
	Conclusion

