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Abstract—Serverless computing emerged as a promising cloud
computing paradigm for deploying cloud-native applications
but raises new performance challenges. Existing performance
evaluation studies focus on micro-benchmarking to measure an
individual aspect of serverless functions, such as CPU speed,
but lack an in-depth analysis of differences in application
performance across cloud providers. This paper presents CrossFit,
an approach for detailed and fair cross-provider performance
benchmarking of serverless applications based on a provider-
independent tracing model. Our case study demonstrates how
detailed distributed tracing enables drill-down analysis to explain
performance differences between two leading cloud providers,
AWS and Azure. The results for an asynchronous application
show that trigger time contributes most delay to the end-to-end
latency and explains the main performance difference between
cloud providers. Our results further reveal how increasing and
bursty workloads affect performance stability, median latency,
and tail latency.

Index Terms—serverless, FaaS, distributed tracing, observabil-
ity, performance, benchmarking

I. INTRODUCTION

Serverless computing [1, 2] emerged as a promising cloud
computing paradigm and experiences strong interest in industry
and academia. It aims to liberate users from operational
concerns, such as managing or scaling server infrastructure, by
offering a fully-managed high-level service with fine-grained
billing. One embodiment of serverless computing is Function-
as-a-Service (FaaS), where FaaS platforms (e.g., AWS Lambda)
execute functions, i.e., event-triggered code snippets. Serverless
developers can leverage a growing ecosystem of serverless
offerings such as object storage (e.g., Amazon S3) to build
inherently scalable applications and achieve faster time-to-
market. These innovations stimulate the fast-growing serverless
market1 and serverless also remains a hot research topic with
hundreds of published papers since 2016, as summarized in
multiple literature reviews [3, 4, 5, 6].

Application performance is an important decision criterion
for practitioners who choose a suitable cloud provider for their
application. It matters to the end-user experience [7, 8] and
many performance challenges have been reported for serverless
platforms [6, 9, 3, 5]. Further, operational costs are directly
connected to performance given the pay-per-use pricing model,
which is typically based on execution duration and resource
consumption.

1https://www.mordorintelligence.com/industry-reports/serverless-
computing-market

Prior work focused on simplistic micro-benchmarks and
incomplete response time metrics [3, 5] but does not capture
the end-to-end latency characteristics of realistic serverless
applications, which often integrate other cloud services [10,
11, 12]. The typical response time metric of synchronously
invoked serverless functions does not represent event-based
serverless architectures, which often use asynchronous triggers
to coordinate complex workflows [13, 10, 12, 14].

Although fairness is a key characteristic of a benchmark [15,
16, 17], serverless benchmarking lacks a transparent approach
to address fairness. Following guidance on how to build
a benchmark, “fairness ensures that systems can compete
on their merits without artificial constraints” [15]. A fair
benchmark design should be motivated by relevance (i.e.,
important functionality) and carefully balance over-simplified
universality (i.e., lowest common denominator) and over-
specific innovation (i.e., bleeding edge) [17]. In heterogeneous
serverless environments, fairness is particularly challenging
to address because the underlying infrastructure is abstracted
away with vendor-specific implementations.

We design an approach for detailed and fair cross-provider
benchmarking called CrossFit and demonstrate drill-down
analysis for an application in two leading cloud providers. We
adopt distributed tracing (Section II) to generate fine-grained
performance profiles for an asynchronous application.We
focus on fairness by thoroughly designing and discussing the
application architecture, a provider-independent tracing model,
and workload generation for cross-provider comparison of a
serverless application. We motivate the choice of application
based on real-world characteristics [10, 12, 18, 1] to over-
come the limitations of micro-benchmarks. Our methodology
(Section III) can serve as a reference for researchers and
practitioners to conduct detailed and fair application-level
benchmarking of serverless platforms. We release the CrossFit
benchmarking software, data, and results as a replication
package [19] to foster future research. The results of our case
study (Section IV) show that storage triggering dominates
the end-to-end latency and explains the main performance
difference between two leading cloud providers, AWS and
Azure. Finally, we discuss our contributions (Section V), relate
them to prior research (Section VI), and outline challenges for
future work (Section VII).
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Figure 1. Simplified causal-time trace diagram of a synchronous invocation.

II. BACKGROUND

A. Serverless Computing

In serverless computing [1, 2], applications are composed
of fully-managed services and often connected through FaaS.
Serverless functions execute in ephemeral environments, where
cloud providers manage and scale the underlying infrastructure.
A one-off initialization called coldstart occurs whenever a new
function instance needs to be provisioned to serve a function
execution request. This provisioning step for a function instance
can, e.g., include the start of a container and a language runtime.
Subsequent warm invocations perform much faster without
initialization but cloud providers recycle idle function instances
after some time. Therefore, external services are necessary to
persist any output of function computation. External services
can also define cloud events, which can trigger a serverless
function (e.g., upon insertion of a database entry). Such
asynchronous event-based function triggering is archetypical for
serverless although other alternatives exist for coordinating a
workflow of functions such as client orchestration, coordinator
functions, and state machines [13, 20].

B. Distributed Tracing

Distributed tracing [21, 22, 23] aims to achieve end-to-end
observability of a request across distributed components. Fig-
ure 1 visualizes an end-to-end backend trace for a synchronous
application with a causal invocation chain starting from Service1
over Function1 into Service2. Service1 receives an incoming
request and generates a unique tracing token 1 for each request.
This tracing token is then used to label each timestamp captured
at trace points of interest and needs to be passed 2 into
every downstream service along the invocation chain. Two
consecutive timestamps are grouped into a trace span if they
encompass a specific operation (e.g., computation) from the
same component (e.g., Service2). A centralized tracing service
correlates spans of the same request from all components using
the tracing token to build a trace graph with causal relationships.

Serverless computing raises several challenges for distributed
tracing. Provider-managed infrastructure limits access for
fine-grained instrumentation and developers need to rely on
distributed tracing services offered by cloud providers. This
leads to observability gaps and typically requires implicit
tracing of downstream services due to missing tracing support.
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Figure 2. High-level overview of benchmarking approach.

III. BENCHMARK DESIGN

Figure 2 shows the high-level architecture of our application
benchmarking approach. First 1 , a serverless application
(Section III-A) is deployed into a cloud provider using an
automated deployment script. For fair cross-provider compar-
ison (Section III-B), an application needs to be configured
appropriately. The application is instrumented with detailed
trace points (Section III-C) and forwards trace spans to a
provider-specific tracing service. Second 2 , a workload profile
(Section III-D) is applied to invoke the application deployed
within a cloud provider. Third 3 , the benchmark orchestrator
retrieves partial traces from the tracing service and correlates 4
them to build a dataset for performance analysis (Section IV).

A. Application Design

We select an application called thumbnail generator that was
previously used for exploring cross-provider migration [24],
performance prediction [25], and performance evaluation [26].
This application has representative, real-world characteris-
tics [10, 12, 18]. Instead of isolated function computation,
our application integrates a common external service (i.e.,
cloud storage) in an idiomatic way for serverless through
asynchronous triggering rather than traditional synchronous
request/response-interaction. Figure 3 visualizes the architecture
of the thumbnail generator consisting of two chained functions
connected through an asynchronous storage bucket trigger.
Table II explains the lifecycle of the application in detail.

Asynchronous Trigger

User

Function1: 
Persist Image

Bucket1: 
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Generate Thumbnail
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Response Time
Synchronous Invocation
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Figure 3. Architecture of the thumbnail generator application.

B. Fairness Design

We defined guidelines on 12 important aspects (a-l) to
architect an application for fair performance comparison across
cloud providers. We aim to simulate a scenario where a general-
purpose serverless application is migrated to another provider,



Table I
CROSS-PROVIDER SERVICE MAPPING FOR THUMBNAIL GENERATOR

AWS Azure

API Gateway AWS API Gateway Azure API Management
Function AWS Lambda Azure Functions
Object Storage AWS S3 Azure Blob Storage

similar to prior work on cloud migration [24]. In this process,
we strive to mitigate misconfigurations that could lead to a
competitive advantage of one provider over another by design,
for example by ignoring official recommendations or comparing
different pieces of work. To balance between universality and
innovation, we suggest the following guidelines:

a) Application Architecture: It is essential to maintain
an equivalent architecture across cloud providers. Prior
work indicated that architecture-retaining migration is possible
even for applications that are not optimized for portability [24].

b) Application Component Mapping: High-level appli-
cation components such as function computation or object
storage need to be mapped based on their functionality
because implementations differ for every cloud provider.
Table I shows the mapping for the thumbnail generator based
on prior work [24]. For other services, we refer to an extensive
list of cross-provider mappings2.

c) Function Resource Allocation: For single-core ap-
plications, we suggest avoiding CPU throttling by aiming
for a full vCPU core while minimizing over-provisioning
(in line with Ustiugov et al. [27]). The resources available
to a serverless function in terms of CPU power, memory,
and network connectivity vary depending on provider-specific
configurations. Many performance benchmarking studies tried
to reverse engineer provider-specific resource allocation poli-
cies [28, 29, 30], especially regarding CPU allocation. For
Azure, neither the memory size (max. 1.5GB) nor the CPU
allocation (fixed) is configurable in the default consumption
plan. For AWS, the memory size is configurable (128MB to
10 248MB) and determines the CPU allocation (proportional
to memory size). Following the AWS documentation3, we con-
figure all Lambda functions with 1769MB memory, which is
equivalent to one vCPU. CPU-intensive multi-core applications
might require trade-off analysis with multiple configurations,
dynamic optimization such as AWS Lambda Power Tuning4,
or runtime prediction such as Sizeless [31].

d) Cost: Cost-relevant configuration options should at
least strive to match pricing categories (e.g., standard vs.
premium) because cost parity is often infeasible. Costs are
determined by cloud providers but usually depend on certain
configuration options. Function computation is typically billed
based on per-time resource consumption and the number of
executions. For example, AWS and Azure charge $0.20 per
million executions and $0.000 016 666 7 (AWS) and $0.000 016

2https://cloud.google.com/free/docs/aws-azure-gcp-service-comparison
3https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-

common.html
4https://github.com/alexcasalboni/aws-lambda-power-tuning

(Azure) for every GB-second execution time5. Given that Azure
automatically determines the memory size, it is impossible to
align costs dependent on memory size across providers. For
object storage, we recommend the default on-demand general-
purpose options for AWS and Azure rather than specialized
low-price long-term options or high-price premium options.
Ideally, the actual cost should be reported to compare the
cost-performance ratio across providers.

e) Function Runtime: The function runtime defines
the execution environment and needs to match across
providers. Each cloud provider supports a list of managed
function runtimes in specific versions (e.g., Node.js 14.x). The
runtime determines the compatible programming languages
(e.g., JavaScript), software libraries, operating system, and
processor architecture (e.g., x86 or arm). Performance differs
by runtime, especially for coldstart overhead [32]. Therefore,
it is essential to use the same runtime and programming
language preferably in the same version across providers.
Fair comparison must only include mature production-ready
versions rather than experimental preview versions. In this
study, we choose .NET Core 3.1 and C# because essential
instrumentation features were only available with this runtime
in Azure.

f) Function Code Reuse: We recommend using pro-
gramming language constructs (e.g., classes, methods, or
libraries) to reuse as much code as possible across provider-
specific implementations. For the thumbnail generator, we
reuse the business logic code for image resizing. Provider-
specific code is inevitable but the high-level flow should match
across providers. For example, we ensure that the storage
client library is initialized at the same time in the control
flow. Quantitative code metrics are of limited use for achieving
accurate trace model parity.

g) Function Operating System: Fair comparison should
adopt the recommended operating system for each provider.
We argue that comparable maturity is more relevant for fair
comparison than using an identical operating system because
the underlying operating system could be considered an
implementation detail as long as the high-level functionality
matches. Therefore, we choose Amazon Linux 2 for AWS
and Windows for Azure. Azure would offer a Linux operating
system but it performs very inconsistently [32].

h) Function Pre-warming: Premium coldstart mitiga-
tion features such as function pre-warming should be
disabled in most cases because they are highly provider-
specific and violate the serverless premise of fine-grained
pay-per-use billing. We actively detect coldstarts through
tracing instead of preventing them through intrusive options
such as provisioned concurrency6 in AWS or the Azure
Functions Premium plan7.

5Pricing at experimentation time January 2022 for the data center regions
us-east-1 (AWS) and East US (Azure)

6https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.
html

7https://docs.microsoft.com/en-us/azure/azure-functions/functions-
premium-plan
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Figure 4. Trace design for thumbnail generator application.

i) Function Triggering Mechanism: The triggering mech-
anism should be aligned across providers and configurable
poll intervals should be reported. Function triggering can
either happen event-driven (i.e., push-based) or poll-based
and varies between services. Reactive event-driven triggers
are typically much faster than potentially unreliable poll-
based triggers that periodically check for new cloud events
(e.g., database insertion). For example, AWS uses event-driven
S3 notifications to trigger functions but the default Azure
Blob Storage trigger uses periodic pulling to scan the storage
container logs for events. To avoid up to 10-minute coldstart
delays, Azure recommends8 using the EventGrid9 trigger.

j) Data Center Location: We suggest choosing estab-
lished data centers in geographically close regions. We
choose the AWS region us-east-1 and the Azure region eastus as
commonly used by other serverless studies [28, 33, 30, 34, 35].

k) Metrics: We focus on fine-grained latency metrics be-
cause latency is typically more relevant than bandwidth [36],
especially in massive scale-out cloud environments. Average
performance is only useful for summarizing cost [37] but
currently over-used in serverless [3] and cloud [38] perfor-
mance studies. Instead, we visualize the full performance
distribution as violin plots and focus on typical performance
(50th percentile), tail latency (e.g., 95th percentile), and stability
(standard deviation). We derive the fine-grained latency metrics
from the instrumentation design (Section III-C).

l) Workload: The same workload is required for
fair cross-provider comparison. Our workload generation
approach allows for sharing workload models (Section III-D)
across applications and cloud providers.

C. Instrumentation Design

This section introduces a detailed provider-agnostic trace
model showcased with the thumbnail generator application.

Figure 4 visualizes 13 interesting timestamps (explained in
Table II) along the critical path for the thumbnail generator
application (depicted in Figure 3). Distributed tracing provides
spans with a start and end timestamp for each service used in
an application (e.g., API Gateway). Serverless functions have
multiple spans: an outer span includes infrastructure-related
operations such as initialization and an inner span for the
execution of user code. Similarly, storage I/O transactions have

8https://docs.microsoft.com/en-us/azure/azure-functions/functions-
bindings-storage-blob-trigger

9https://azure.microsoft.com/en-us/services/event-grid/

an outer span that includes authentication operations and an
inner span for the actual storage data transfer.

Table II describes each operation between pairwise times-
tamps along the critical path from an incoming HTTP request
(t1) until the processed thumbnail image is written to object
storage (t13). Function computation (e.g., CompF1) is preceded
by initialization (e.g., InitF1) and trigger (e.g., TrigH) opera-
tions. Storage transactions include authentication overhead (e.g.,
AuthF1) before the actual read/write operation (e.g., WriteF1).
Our model includes important timestamps available in both
AWS and Azure and therefore needs to omit some finer-grained
timestamps that are unmappable across providers. For example,
AWS traces could further split function initialization (e.g.,
InitF1) into container and runtime initialization.

D. Workload Design
We compare a constant baseline workload against three

bursty workloads with different levels of burstiness. The
constant workload C generates 1 request per second and runs
for 5 minutes yielding 300 invocations. We choose a low
request rate because a comprehensive characterization of the
production workload from Azure Functions [12] has shown
that 81% of the applications were invoked at most once per
minute on average. At the same time, the most popular 18.6%
applications are responsible for 99.6% of all invocations and
exhibit higher invocation rates of at least 1 request per minute
on average [12]. Additionally, FaaS workloads exhibit highly
dynamic bursty workload patterns as confirmed by production
workloads from Azure [12] and Alibaba [39] as well as by a
characterization study of serverless applications from diverse
cloud providers [10]. To represent these higher invocation rates
and bursty workload characteristics, we designed three bursty
workloads (B1-B3). The bursty workload model distributes
a fixed number of requests (e.g., 300 to match the constant
baseline) over a variable number of bursts of a given size. After
N bursts, a cooldown phase follows to meet the target number
of requests. We instantiate the bursty workload model with
increasing burst sizes:
B1 4 bursts of size 12 with 20 seconds cooldown.
B2 2 bursts of size 25 with 30 seconds cooldown.
B3 1 burst of size 50 with 40 seconds cooldown.

E. Implementation
We automate CrossFit to mitigate reproducibility challenges

in serverless experimentation [3] using our benchmarking
orchestrator ServiBench [40] (see Figure 2). We extend
ServiBench for Azure including trace correlation. We port
the thumbnail generator application based on ServiBench [40]
to .NET and Azure and automate its deployment using
Terraform10. Using the tracing SDKs, we instrument the appli-
cation with AWS X-Ray11 and Azure Application Insights12.
The workloads from Section III-D are provided as K613

10https://www.terraform.io/
11https://aws.amazon.com/xray/
12https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-

overview
13https://k6.io/
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https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://k6.io/


Table II
SUMMARY OF TIMESTAMPS AND OPERATIONS BETWEEN TIMESTAMPS FOLLOWING THE TRACE DESIGN IN FIGURE 4

Operation Timestamp Operation

Description Name Description Name Description

HTTP triggering: Time to trigger
F1 from an HTTP request TrigH t1 API gateway receives HTTP request t1

t2 F1 (upload) gets triggered t2 InitF1 Startup overhead of F1: container
+ runtime initializationComputation of F1: HTTP event

parsing CompF1 t3 F1 executes first line of user code t3
t4 F1 initiates WRITE to storage operation t4 AuthF1 Storage overhead: authenticate

with storage for WRITEData transfer: write data from F1
to storage WriteF1 t5 F1 starts sending data to storage t5

t6 F1 completes image transfer to storage t6 TrigS Storage triggering: Time to
trigger F2 from a storage eventStartup overhead of F2: container

+ runtime initialization InitF2 t7 F2 (create thumbnail) gets triggered t7
t8 F2 executes first line of user code (READ) t8 AuthF2r Storage overhead: authenticate

with storage for READData transfer: read data from
storage to F2 ReadF2 t9 F2 starts receiving data from storage t9

t10 F2 completes image transfer from storage t10 CompF2 Computation of F2: resize image
Storage overhead: authenticate
with storage for WRITE AuthF2w t11 F2 initiates WRITE to storage operation t11

t12 F2 starts sending data to storage t12 WriteF2 Data transfer: write data from F2
to storaget13 F2 completes image transfer to storage t13

configurations reusable across applications and cloud providers.
All code, configuration, and data is documented and available
in our replication package [19].

IV. CASE STUDY

We first summarize the experiment setup before presenting
the results for the latency breakdown of the thumbnail generator
under the different workloads from Section III-D.

A. Experiment Setup

We instantiate the benchmark design from Section III by
conducting a performance experiment in AWS and Azure. All
workloads are executed from a local computer to simulate
user interaction with the thumbnail generator application. The
location of the load generator has a limited impact on the results
because we use backend tracing rather than relying on client-
side response time measurements as common in prior work. We
repeat all workloads multiple times and report representative
executions from January 2022. We focus on the typical scenario
of warm invocations and filter out coldstarts because they
exhibit fundamentally different performance characteristics and
need to be studied separately.

B. Latency Breakdown

The violin plot in Figure 5 visualizes the latency breakdown
of the thumbnail generator application comparing the providers
AWS and Azure. We group the operations into three categories:
<2500ms (left), <700ms (middle), and <70ms (right).

The left group shows that storage triggering dominates the
total duration and explains the performance difference between
providers. Asynchronous storage triggering is by far the slowest
operation for both providers introducing unpredictable delays
of (485.0± 117.0)ms (median±standard deviation) for Azure
and (1176.0± 355.0)ms for AWS.

The middle group reveals interesting differences across
providers. The HTTP trigger TrigH has practically the same
median for both providers but Azure exhibits higher variability

as the standard deviation shows: (17.0 ± 3.8)ms for AWS
vs. (16.0 ± 6.2)ms for Azure. InitF1 of the lightweight
Function1 shows that AWS exhibits consistently less initial-
ization overhead than Azure, which suffers from extreme
outliers going beyond 500ms. In contrast, the heavyweight
Function2 with larger code libraries initializes almost instantly
in Azure compared to much slower initialization in AWS
(67.0 ± 31.0)ms. This caching effect in Azure is caused by
their in-process function scheduling14, where both functions
share the same process and therefore InitF1 includes the
initialization overhead for both functions. For the computation
in Function2 (CompF2), AWS performs ~40% faster than
Azure in single-core performance with the selected memory
configuration (1769MB for AWS, see Section III-B). Larger
memory configurations with multi-core virtual CPUs are
available for AWS at a higher cost, which can be beneficial for
parallelizable workloads. Storage I/O operations for both read
(ReadF2) and write (WriteF1, WriteF2) perform faster and
more predictable on Azure compared to AWS, which suffers
from slow tail performance, especially for write operations.

The right group contributes almost negligible time towards
the total duration because Function1 performs no computation
and authentication is cached for warm invocations.

Key Findings:
• Asynchronous storage triggering dominates the end-to-

end latency of the thumbnail generator application.
• The Azure EventGrid-based storage trigger has lower

and more predictable latency than the AWS S3 trigger.
• The AWS HTTP trigger latency is more predictable

compared to Azure.
• Azure storage operations (read/write) are faster and

more predictable than in AWS under low load.

14Default behavior in the latest stable .NET version (3.1) during benchmark
development.
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Figure 5. Detailed latency breakdown of the thumbnail generator application for warm invocations using the constant baseline workload. The horizontal
middle dash denotes the median and the outer dashes denote quartiles.

C. Workload Types

Figure 6 compares the baseline constant workload (C) to
bursty workloads with different burst sizes (B1-B3). The total
duration shows that bursty workloads change the shape of
the distribution and introduce more variability with increasing
burst size. For AWS, bursty workloads exhibit distributions
that are more skewed towards long tail latency compared to
the flat distribution for the constant baseline workload. For
Azure, bursty workloads introduce a bimodal distribution and
significant variability compared to the relatively predictable
constant baseline.

The computation for the second function CompF2 exempli-
fies the effects of bursty workloads compared to the constant
baseline workload. For both providers, the median performance
increases and major performance variability is introduced. AWS
develops a clear bimodal distribution in addition to more tail
latency observed for Azure as well.

Storage I/O operations (e.g., WriteF1) suffer from very long
tail latency in the constant baseline, especially in AWS. Bursty
workloads might deteriorate the situation but additional burst
rates should be tested. While the other write operation (WriteF2)
follows a similar pattern, the read operation (ReadF2) is more
predictable in AWS than in Azure.

The initialization of InitF1 explains the large variability
caused by bursty workloads in Azure. In addition to the Azure
in-process caching effects discussed in the previous section,
Azure tends to re-use existing function instances rather than
provision new ones. This scheduling policy reduces coldstarts
but introduces massive queueing delays. In contrast, AWS
delivers predictable warm initialization performance at the cost
of more frequent coldstarts because their scheduling policy
provisions new function instances whenever needed to avoid
queueing at the function instance. Therefore, the results for
InitF2 follow the same behavior as discussed previously: Azure
delivers much more predictable performance than AWS and
higher burst rates increase performance variability.

Key Findings:
• The function scheduling policy of a provider is the main

factor affecting performance under different workloads.
• Bursty workloads primarily cause more performance

variability (i.e., flatter and bi-modal distributions)
• Bursty workloads can also degrade median latency,

especially for compute-heavy operations.
• AWS copes better with bursty workloads than Azure.

V. DISCUSSION

We now discuss results and challenges related to tracing,
serverless scalability, fair comparison, and threats to validity.

A. Importance of Detailed Tracing

Our results demonstrate that a detailed latency breakdown
is instrumental for deriving actionable insights. We show that
a single aspect (e.g., storage triggering) can dominate the end-
to-end latency. It is important to identify such dominating
aspects to guide performance optimization efforts. Further,
aggregating heterogeneous aspects could mask performance
issues. For example, the total duration in Figure 5 suggests a
normal distribution but masks extreme outliers in the heavily
skewed InitF1 operation. Finally, detailed traces are essential for
differentiating provider capabilities for different operation types
such as computation, storage I/O, and coordination overhead.
For example, the total duration might suggest that Azure clearly
outperforms AWS but the latency breakdown attributes this
observation primarily to storage triggering.

Our study helps to interpret the many micro-benchmarking
studies [3, 5, 4] in the context of serverless applications.
We demonstrate that other aspects such as trigger time and
storage I/O can be more relevant than computation for a
wide range of applications. In particular, some asynchronous
trigger implementations might be unsuitable for interactive
applications.
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Figure 6. Comparison of workload types for constant (C) and bursty (B1-B3) workloads. Warm invocations only.

B. Scalability Implications of Serverless

The serverless solutions from AWS and Azure follow
different paradigms with implications for scalability. AWS
purposefully designed massive multi-tenant services such as
Firecracker [11] for serverless functions or Amazon S3 [41]
and DynamoDB [42] for serverless storage. Azure also offers
dedicated storage solutions under the umbrella of Azure
Storage [43] (e.g., blob for files) but appears to operate
services with stronger per-tenant isolation of the underlying
hardware. For example, Azure Blob storage performs more
predictable in a presumably more isolated environment com-
pared to Amazon S3. Amazon S3 experiences worse tail
latency, which is common for multi-tenant systems subject
to noisy neighbors [44]. Another example is the in-process
function scheduling in Azure, which is only possible with
co-scheduling functions on the same host isolated from other
tenants. We previously discussed performance implications
of such a scheduling strategy in Sections IV-B and IV-C, in-
cluding positive (e.g., more predictable performance), negative
(queueing delay due to function reuse), and trade-offs (e.g.,
caching effect in multi-function workflows). Elasticity remains
a major limitation of using more heavyweight virtual machines
(VMs) for serverless functions in Azure [12] compared to
purposefully built microVMs based on Firecracker in AWS [11].
This limitation was also observed by other studies [45, 27] but
our results on function initialization overhead (InitF1) enable
direct explanation through root cause analysis. To mitigate some
of these challenges, Azure plans to phase out the in-process
design to decrease host affinity according to their roadmap [46].

C. Fairly Comparing Cloud Providers

Portability is a key challenge for fair performance com-
parison across heterogeneous cloud providers in serverless
computing. Vendor lock-in makes it impossible to implement
a single provider-agnostic benchmark because there exists no
common interface. Therefore, cross-provider support requires
careful application migration [24].

Our fairness design (see Section III-B) demonstrates that it is
sometimes impossible or undesired to choose identical options
within a heterogeneous environment. When mapping appli-
cation components to provider-specific services, an identical
option is often unavailable but there typically exists a different
implementation of the same service type that offers similar high-
level functionality (e.g., object storage, database storage). If

multiple substitute services exist (e.g., message queues), parity
in functionality and pricing can be used to select the most
related service. When selecting comparable configurations, a
presumably identical option could lead to an unfair competitive
advantage if it contradicts provider recommendations. Hence,
rather than insisting on literally identical options, the goal
towards fair cross-provider compatibility should be to compare
the recommended configuration for each provider (e.g., most
mature). Configuration selection requires high technical exper-
tise for the experiment design and should ideally involve an
independent committee [15].

Comparable instrumentation is crucial for measuring equiv-
alent segments of work but comes with several portability
challenges. A provider-agnostic trace model (e.g., Section III-C)
is a compromise based on varying instrumentation capabilities
(e.g., more fine-grained) but it can only incorporate mappable
timestamps. Further, the exact timing of certain timestamps
within the provider-internal infrastructure is sometimes not well-
defined and requires clarification through provider support.

D. Threats to Validity

1) Construct Validity: We alleviate threats to construct
validity by thoroughly discussing the design of the instru-
mentation (Section III-C) and fairness (Section III-B). Unlike
other benchmarks that solely report overall response times, our
latency breakdown based on carefully selected trace points
enables explainable benchmarking of fine-grained components.
Additionally, we capture client-side response times and corre-
late them with backend traces for end-to-end request validation.

2) Internal Validity: Internal validity is a primary concern
in cloud benchmarking [47] and is especially challenging for
serverless because its underlying infrastructure is abstracted
away, appearing almost like a black box for end users. We
reviewed many existing academic and industrial serverless
studies from literature reviews [5, 3, 4] to identify known
factors and motivate fair configuration in Section III-B. We
acknowledge that some confounding factors are out of our
control when studying inherently multi-tenant large-scale
production services. To mitigate this threat, we quantify the
cumulative effect of performance variability by visualizing
performance distributions as violin plots.

3) External Validity: This study focuses on two leading
cloud providers (i.e., AWS and Azure) representing over 80%
of the serverless applications [10, Fig. 17]. Serverless perfor-
mance results are not generalizable beyond the studied cloud



providers [5, 3, 32, 27, 35]. The results within a cloud provider
are generalizable to a certain extent for similar operations under
comparable workloads (e.g., file size, computation task). Our
approach presented in Section III is transferrable to other
applications and providers that support distributed tracing.

VI. RELATED WORK

We discuss our contribution within the context of serverless
benchmarking and related application benchmarks.

A. Serverless Benchmarking

Performance benchmarking is the most active field of
research in serverless [4] with hundreds of studies published
since its inception in 2016 [3, 5]. Prior studies primarily
focus on serverless functions using micro-benchmarks to
evaluate the CPU performance of a single function [3]. Many
studies try to reverse-engineer serverless function platforms to
characterize factors [48] such as tenant isolation [28], instance
lifetime [29], network and disk I/O [49], coldstart overhead [50],
language performance [32, 33], processor architecture [51], or
elasticity [45, 27]. In contrast to these micro-benchmarks, we
use a realistic application to evaluate end-to-end latency and
provide actionable insights through latency breakdown analysis.
This better reflects real-world serverless applications, which
typically consist of multiple functions integrated with external
services such as object storage, queues, or messaging services.

B. Serverless Application Benchmarking

Serverless applications that represent real-world character-
istics such as multi-function workflows or external service
integration are rare in prior work. Some studies started to
explore function chaining [52] and the effects of different
function coordination mechanisms [13] including asynchronous
function chains [53]. There is more work on evaluating
serverless workflow services [54, 55, 56, 57, 55] such as
AWS StepFunction or Azure Durable Functions. However,
most studies use empty or artificial functions that are not
representative of real-world applications.

Only a few studies deploy non-trivial applications that
integrate external services such as object storage or databases.
PanOpticon [52] compares function execution times of a chat
application between AWS and Google. ServerlessBench [58]
presents a course-grained latency breakdown of four applica-
tions on the open-source platform OpenWhisk. Most similar
to our work, BeFaaS [59] compares the latency of an e-
commerce application between the three providers AWS, Azure,
and Google. BeFaaS categorizes latency into three categories:
computation, network transmission, and database service time.
BeFaaS mentions fairness as a benchmark requirement but lacks
a comprehensive discussion on how it should be addressed.
In contrast, our approach leverages more fine-grained tracing
for detailed latency breakdown analysis across asynchronous
call boundaries of different function triggers. We believe to
provide the most extensive guidelines of fairness aspects for
cross-provider serverless benchmarking yet.

VII. CONCLUSION

We designed and implemented CrossFit, an application
benchmark targeting AWS and Azure with a focus on fair
cross-provider comparison and fine-grained performance anal-
ysis. We identified 12 fairness aspects that highlight the
importance of configuration options and demonstrate that
identical configuration can in some cases lead to an unfair
competitive advantage. Our provider-agnostic trace model
enables detailed cross-provider tracing of applications under
different workloads including a constant baseline and three
bursty workloads with different levels of burstiness. The
results of our case study demonstrate that other aspects than
function execution contribute to the majority of cross-provider
performance differences. In particular, asynchronous storage
triggering dominates the end-to-end latency. We further show
that bursty workloads cause more performance variability but
the effects vary for different services and providers.

In conclusion, our study emphasizes the importance of
fine-grained performance analysis on an application level to
enable deriving actionable insights. Practitioners should care-
fully choose appropriate function triggers for latency-sensitive
applications. For researchers, we offer a reference to design fair
cross-provider application benchmarks. Finally, we synthesize
insights on serverless performance by relating the results of
micro-benchmarking studies to serverless applications.

Future work can extend the scope of this approach to
other applications, cloud providers, and workloads. Additional
applications can cover other external services (e.g., database),
triggers (e.g., queues), and language runtimes (e.g., Python).
Other major cloud providers, such as Google and Alibaba,
offer promising function tracing capabilities and many other
providers (e.g., Oracle, IBM) are working on improving
their function tracing capabilities. Our approach supports
new workloads through powerful and well-documented K6
scenarios15 to study aspects such as coldstarts [27], function
instance lifetime [12], and elasticity [45] for applications.

As serverless tracing matures, we envision that future appli-
cation benchmarking becomes easier, more portable, and more
fine-grained. Automated dependency tracking could facilitate
tracing by replacing our intrusive manual instrumentation.
Recent advancements in tracing standardization through Open-
Telemetry could make instrumentation more portable across
providers in future studies. Providers could expose more fine-
grained trace points (e.g., through AWS Lambda Extensions)
to optimize coldstarts for different language runtimes. Finally,
longitudinal performance studies can keep the results updated
as serverless systems evolve.
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